50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số Toán 12 mới nhất
Với 50 Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số Toán lớp 12 mới nhất được biên soạn bám sát chương trình Toán 12 giúp các bạn học tốt môn Toán hơn.
Tài liệu gồm: 15 bài tập trắc nghiệm, 15 bài tập tự luận có lời giải và 20 bài tập vận dụng. Mời các bạn đón xem:
Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số - Toán 12
I. Bài tập trắc nghiệm
Bài 1: Trong các mệnh đề sau, mệnh đề nào đúng?
A. I(1; 0) là tâm đối xứng của
B. I(1; 0) là tâm đối xứng của y = -x3 + 3x2 - 2
C. I(1; 0) là điểm thuộc đồ thị
D. I(1; 0) là giao điểm của y = x3 - 3x2 - 2 với trục hoành.
Lời giải:
Đối với hàm phân thức hữu tỉ, giao điểm của 2 đường tiệm cận là tâm đối xứng của đồ thị hàm số.
A. Tâm đối xứng của
C. Điểm I(1; 0) không thuộc đồ thị
D. Điểm I(1; 0) không thuộc đồ thị y = x3 - 3x2 - 2 nên không phải là giao điểm của y = x3 - 3x2 - 2 với trục hoành.
Chọn đáp án B.
Bài 2: Tìm m để bất phương trình x4 + 2x2 ≥ m luôn đúng.
A. m = 0
B. m < 0
C. m ≤ 0
D. Không có đáp án
Lời giải:
Xét hàm số y = x4 + 2x2 có a = 1 > 0; b = 2 > 0 => a, b cùng dấu.
Đồ thị có dạng như hình bên.
Do đó, để bất phương trình x4 + 2x2 ≥ m luôn đúng thì m ≤ min(x4 + 2x2)
Từ đồ thị hàm số ta suy ra m ≤ 0 . Chọn đáp án C.
Bài 3: Cho hàm số
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là nghiệm của phương trình y'' = 0 là
Lời giải:
Ta có
y' = x2 + 2x; y'' = 2x + 2 => y'' = 0 <=> x = -1 => -, y'(-1) = -1
Phương trình tiếp tuyến của đồ thị hàm số tại điểm x = -1 là:
Chọn đáp án A.
Bài 4: Cho hàm số
Tìm phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đó song song với đường thẳng y = 3x -1
A. y = 3x + 1
B. y = 3x -
C. 3x + 20
D. Cả A và B đúng
Lời giải:
Ta có y' = x2 - 4x + 3. Tiếp tuyến của đồ thị (C) song song với đường thẳng y = 3x - 1 nên hệ số góc của tiếp tuyến là k = 3.
Xét y' = 3 <=> x2- 4x = 0
Phương trình tiếp tuyến của đồ thị tại A(0;1) có hệ số góc k = 3 là y = 3x + 1
Phương trình tiếp tuyến của đồ thị tại B(4; ) có hệ số góc k = 3 là
Chọn đáp án D.
Bài 5: Gọi M, N là giao điểm của
Khi đó hoành độ trung điểm của I của đoạn thẳng MN bằng
A. 2
B.1
C. 0
D. -1
Lời giải:
Xét phương trình hoành độ giao điểm
Giao điểm của hai đồ thị hàm số là M(x1; y1), N(x2; y2) với x1, x2 là nghiệm phương trình (1). Do đó
Chọn đáp án B.
Bài 6: Tìm m để phương trình x3 + 3x2 = m có ba nghiệm phân biệt
A. m > 4
B. m < 0
C. 0 ≤ m ≤ 4
D. 0 < m < 4
Lời giải:
Xét hàm số
y = f(x) = x3 + 3x2 (C)
Đồ thị hàm số có dạng như hình bên.
x3 + 3x2 = m có ba nghiệm phân biệt
<=> Đường thẳng y = m cắt đồ thị (C) tại ba điểm phân biệt <=> 0 < m < 4
Chọn đáp án D.
Bài 7: Cho hàm số 2x3 - 3(m+1)x2 + 6(m + 1)2x + 1. Hình nào dưới đây mô tả chính xác nhất đồ thị hàm số trên?
Lời giải:
Ta có: a = 2 > 0; y' = 6x2 - 6(m + 1)x + 6(m + 1)2 = 6[x2 - (m + 1)x + (m + 1)2]
y' = 0 ⇔ x2 - (m + 1)x + (m + 1)2 = 0
Δ = -3(m + 1)2 ≤ 0 ∀x ∈ R => y' = 0 vô nghiệm hoặc nghiệm kép
Do đó, đồ thị hàm số đã cho không có cực trị.
Chọn C.
Bài 8: Đường cong trong hình dưới đây là đồ thị của một hàm số trong 4 hàm số được liệt kê ở 4 phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A. y = x4 + 3x2 - 2
B. y = x3 - 2x2 + 1
C. y = -4x4 + x2 + 4
D. y = x4 - 2x2 + 3
Lời giải:
Dựa vào hình vẽ, ta thấy đây là đồ thị ứng với hàm bậc bốn trùng phương có a > 0 và a, b, trái dấu.
Chọn đáp án D.
Bài 9: Đồ thị trong hình dưới đây là đồ thị của đồ thị hàm số nào?
A. y = x2 - 2x + 1
B. y = x3 + 4x2 - 2x + 5
C. y = x4 + x2 + 1
D. y = x4 - 3x2 + 5
Lời giải:
Dựa vào hình vẽ, ta thấy đồ thị trên là của hàm trùng phương có a > 0 và a, b, cùng dấu hoặc hàm số bậc hai với a > 0 ⇒ loại B và D.
Tuy nhiên đỉnh của parabol của đồ thị hàm số y = -x3 - 3x2 + 1 là I(1; 0) nằm trên trục hoành ⇒ loại A
Chọn đáp án C.
Bài 10: Tâm đối xứng của đồ thị hàm số y = -x3 - 3x2 + 1 là:
A. (-1; -1)
B. (-2; -3)
C. (0; 1)
D. Không có đáp án
Lời giải:
y' = -3x2 - 6x; y'' = -6x - 6; y'' = 0 => x = -1
Vậy điểm U(-1; -1) là tâm đối xứng của đồ thị .
(Đồ thị hàm số bậc ba nhận điểm uốn làm tâm đối xứng – hoành độ điểm uốn là nghiệm phương trình y'' = 0 ).
Chọn đáp án A.
II. Bài tập tự luận có lời giải
Câu 1: Đường cong trong hình dưới đây là đồ thị của một hàm số trong 4 hàm số được liệt kê ở 4 phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A. y = x4 + 3x2 - 2
B. y = x3 - 2x2 + 1
C. y = -4x4 + x2 + 4
D. y = x4 - 2x2 + 3
Câu 2: Đồ thị trong hình dưới đây là đồ thị của đồ thị hàm số nào?
A. y = x2 - 2x + 1
B. y = x3 + 4x2 - 2x + 5
C. y = x4 + x2 + 1
D. y = x4 - 3x2 + 5
Dựa vào hình vẽ, ta thấy đồ thị trên là của hàm trùng phương có a > 0 và a, b, cùng dấu hoặc hàm số bậc hai với a > 0 ⇒ loại B và D.
Tuy nhiên đỉnh của parabol của đồ thị hàm số y = -x3 - 3x2 + 1 là I(1; 0) nằm trên trục hoành ⇒ loại A
Câu 3: Tâm đối xứng của đồ thị hàm số y = -x3 - 3x2 + 1 là:
Lời giải:
y' = -3x2 - 6x; y'' = -6x - 6; y'' = 0 => x = -1
Vậy điểm U(-1; -1) là tâm đối xứng của đồ thị .
(Đồ thị hàm số bậc ba nhận điểm uốn làm tâm đối xứng – hoành độ điểm uốn là nghiệm phương trình y'' = 0 ).
Câu 4: Trong các mệnh đề sau, mệnh đề nào đúng?
A. I(1; 0) là tâm đối xứng của
B. I(1; 0) là tâm đối xứng của y = -x3 + 3x2 - 2
C. I(1; 0) là điểm thuộc đồ thị
D. I(1; 0) là giao điểm của y = x3 - 3x2 - 2 với trục hoành.
Đối với hàm phân thức hữu tỉ, giao điểm của 2 đường tiệm cận là tâm đối xứng của đồ thị hàm số.
A. Tâm đối xứng của
C. Điểm I(1; 0) không thuộc đồ thị
D. Điểm I(1; 0) không thuộc đồ thị y = x3 - 3x2 - 2 nên không phải là giao điểm của y = x3 - 3x2 - 2 với trục hoành.
Câu 5: Tìm m để bất phương trình x4 + 2x2 ≥ m luôn đúng.
Lời giải:
Xét hàm số y = x4 + 2x2 có a = 1 > 0; b = 2 > 0 => a, b cùng dấu.
Đồ thị có dạng như hình bên.
Do đó, để bất phương trình x4 + 2x2 ≥ m luôn đúng thì m ≤ min(x4 + 2x2)
Từ đồ thị hàm số ta suy ra m ≤ 0 . Chọn đáp án C.
Câu 6: Cho hàm số
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là nghiệm của phương trình y'' = 0 là?
Lời giải:
Ta có
y' = x2 + 2x; y'' = 2x + 2 => y'' = 0 <=> x = -1 => -, y'(-1) = -1
Phương trình tiếp tuyến của đồ thị hàm số tại điểm x = -1 là:
Câu 7: Cho hàm số
Tìm phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đó song song với đường thẳng y = 3x -1
Lời giải:
Ta có y' = x2 - 4x + 3. Tiếp tuyến của đồ thị (C) song song với đường thẳng y = 3x - 1 nên hệ số góc của tiếp tuyến là k = 3.
Xét y' = 3 <=> x2 - 4x = 0
Phương trình tiếp tuyến của đồ thị tại A(0;1) có hệ số góc k = 3 là y = 3x + 1
Phương trình tiếp tuyến của đồ thị tại B(4; ) có hệ số góc k = 3 là
Câu 8: Gọi M, N là giao điểm của
Khi đó hoành độ trung điểm của I của đoạn thẳng MN bằng?
Lời giải:
Xét phương trình hoành độ giao điểm
Giao điểm của hai đồ thị hàm số là M(x1; y1), N(x2; y2) với x1, x2 là nghiệm phương trình (1). Do đó
Câu 9: Tìm m để phương trình x3 + 3x2 = m có ba nghiệm phân biệt
Lời giải:
Xét hàm số
y = f(x) = x3 + 3x2 (C)
Đồ thị hàm số có dạng như hình bên.
x3 + 3x2 = m có ba nghiệm phân biệt
<=> Đường thẳng y = m cắt đồ thị (C) tại ba điểm phân biệt <=> 0 < m < 4
Câu 10: Cho hàm số 2x3 - 3(m+1)x2 + 6(m + 1)2x + 1. Hình nào dưới đây mô tả chính xác nhất đồ thị hàm số trên?
Ta có: a = 2 > 0; y' = 6x2 - 6(m + 1)x + 6(m + 1)2 = 6[x2 - (m + 1)x + (m + 1)2]
y' = 0 ⇔ x2 - (m + 1)x + (m + 1)2 = 0
Δ = -3(m + 1)2 ≤ 0 ∀x ∈ R => y' = 0 vô nghiệm hoặc nghiệm kép
Do đó, đồ thị hàm số đã cho không có cực trị.
III. Bài tập vận dụng
Bài 1 Cho hàm số y = x4 + (m2 + 1)x2 + 1. Hình nào dưới đây mô tả chính xác nhất đồ thị hàm số trên?
Bài 2 Đường thẳng y = 3x + m là tiếp tuyến của đường cong y = x3 + 2 khi m bằng?
Bài 3 Tiếp tuyến của parabol y = 4 - x2 tại điểm (1; 3) tạo với hai trục tọa độ một tam giác vuông. Diện tích tam giác vuông đó là?
Bài 4 Cho hàm số y = 3x - 4x3 . Có nhiều nhất mấy tiếp tuyến với đồ thị hàm số đi qua điểm M(1; 3) ?
Bài 5 Tìm m để phương trình x4 - 2x2 + 3 - m2 + 2m = 0 có đúng ba nghiệm phân biệt
Bài 6 Với m > 0 phương trình có ít nhất mấy nghiệm?
Bài 7 Với mọi m ∈ (-1; 1) phương trình sin2 + cosx = m có mấy nghiệm trên đoạn [0; π] ?
Bài 8 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số đã học theo sơ đồ trên.
y = ax + b
y = ax2 + bx + c
Bài 9 Khảo sát sự biến thiên và vẽ đồ thị hàm số y = - x2 + x + 1.
Bài 10 Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = -x4 + 2x2 + 3.
Bài 11 Bằng đồ thị, biện luận theo m số nghiệm của phương trình -x4 + 2x2 + 3 = m.
Bài 12 Lấy một ví dụ về hàm số dạng y = ax4 + bx2 + c sao cho phương trình y’ = 0 chỉ có một nghiệm.
Xem thêm các bài Bài tập Toán lớp 12 hay, chi tiết khác:
Bài tập Sự đồng biến nghịch biến của hàm số
Xem thêm các chương trình khác:
- Giải sgk Hóa học 12 (sách mới) | Giải bài tập Hóa 12
- Lý thuyết Hóa học 12
- Giải sbt Hóa học 12
- Các dạng bài tập Hoá học lớp 12
- Giáo án Hóa học lớp 12 mới nhất
- Tóm tắt tác phẩm Ngữ văn 12
- Soạn văn 12 (hay nhất) | Để học tốt Ngữ văn 12 (sách mới)
- Soạn văn 12 (ngắn nhất)
- Tác giả tác phẩm Ngữ văn lớp 12
- Văn mẫu lớp 12
- Giải sgk Sinh học 12 (sách mới) | Giải bài tập Sinh học 12
- Lý thuyết Sinh học 12 | Kiến thức trọng tâm Sinh 12
- Giải sgk Địa Lí 12 (sách mới) | Giải bài tập Địa lí 12
- Lý thuyết Địa Lí 12
- Giải Tập bản đồ Địa Lí 12
- Giải sgk Vật Lí 12 (sách mới) | Giải bài tập Vật lí 12
- Giải sbt Vật Lí 12
- Lý thuyết Vật Lí 12
- Các dạng bài tập Vật lí lớp 12
- Giáo án Vật lí lớp 12 mới nhất
- Giải sgk Lịch sử 12 (sách mới) | Giải bài tập Lịch sử 12
- Giải Tập bản đồ Lịch sử 12
- Lý thuyết Lịch sử 12
- Giải sgk Giáo dục công dân 12
- Lý thuyết Giáo dục công dân 12
- Giải sgk Giáo dục quốc phòng - an ninh 12 (sách mới) | Giải bài tập GDQP 12
- Lý thuyết Giáo dục quốc phòng 12 | Kiến thức trọng tâm GDQP 12
- Lý thuyết Tin học 12
- Lý thuyết Công nghệ 12