50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 mới nhất

Với 50 Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán lớp 12 mới nhất được biên soạn bám sát chương trình Toán 12 giúp các bạn học tốt môn Toán hơn.

Tài liệu gồm: 15 bài tập trắc nghiệm, 15 bài tập tự luận có lời giải và 20 bài tập vận dụng. Mời các bạn đón xem:

1 3,913 24/09/2022
Tải về


Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số - Toán 12

I. Bài tập trắc nghiệm

Bài 1: GTLN của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

trên khoảng (0; 4) đạt được

A. x = 1    

B. x = -1    

C. x = 2    

D. Không tồn tại

Lời giải:

Xét

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có y' = 0 => x = 1

Vậy hàm số có GTLN bằng 2 khi x = 1.

Chọn đáp án A.

Bài 2: Tìm GTLN của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. 0    

B. +∞    

C. Không tồn tại   

D. Không có đáp án

Lời giải:

Tập xác định R.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có bảng biến thiên:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số không có GTLN trên R . Chọn đáp án C.

Bài 3: Một hành lang giữa hai tòa tháp có hình dạng một hình lăng trụ đứng. Hai mặt bên ABB’A’ và ACC’A’ là hai tấm kính hình chữ nhật dài 20m, rộng 5m. Với độ dài xấp xỉ nào của BC thì thể tích hành lang này lớn nhất

A. 6m    

B. 7m

C. 8m    

D. 9m.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Thể tích hình lăng lớn nhất khi và chỉ khi diện tích ΔABC lớn nhất.

Gọi độ dài BC là x (m). Kẻ AH ⊥ BC.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài toán đưa về tìm x ∈ (0; 10) để hàm số y = x100-x2 có giá trị lớn nhất.

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng biến thiên:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số đạt giá trị lớn nhất tại x = 52 ≈ 7. Chọn đáp án B.

Bài 4: Tìm GTNN của hàm số y = x2 - 3x + 5

A. 32  

B. 114   

C. 3    

D. 5

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lập bảng biến thiên ta được, hàm số đạt giá trị nhỏ nhất tại:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Giá trị lớn nhất của hàm số f(x) = -x2 + 4 là:

A. 0    

B. 4    

C.2    

D. Không có đáp án.

Lời giải:

Tập xác định: D = R. Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó giá trị lớn nhất của hàm số f(x) là 4 đạt được khi x = 0. Chọn đáp án B.

Bài 6: Giá trị lớn nhất của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

đạt được khi x nhận giá trị bằng:

A. 1   

B. 5    

C. 0    

D. Không có đáp án.

Lời giải:

Tập xác định: D = R \ {1}

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

=> không tồn tại x thỏa mãn. Do đó hàm số không có giá trị lớn nhất. Chọn đáp án D.

Bài 7: Giá trị lớn nhất của hàm số y = x(5 - 2x)2 trên [0; 3] là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy GTLN của hàm số trên [0; 3] là 25027 đạt được khi x = 56.

Chọn đáp án C.

Bài 8: Giá trị lớn nhất của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

có đồ thị như hình bên là

A. 3    

B. 7

B. -1    

D. 4

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Chọn đáp án D.

Chú ý. Cần phân biệt giá trị lớn nhất của hàm số và cực đại của hàm số.

Bài 9: Một công ti quản lí chuẩn bị xây dựng một khu chung cư mới. Họ tính toán nếu tòa nhà có x căn hộ thì chi phí bảo trì của tòa nhà là: C(x) = 4000 - 14x + 0,04x2. Khu đất của họ có thể xây được tòa nhà chứa tối đa 300 căn hộ. Hỏi họ nên xây dựng tòa nhà có bao nhiêu căn hộ để chi phí bảo trì của tòa nhà là nhỏ nhất?

A. 150    

B.175    

C. 300    

D.225

Lời giải:

Ta có x là số căn hộ. Rõ ràng x phải thỏa mãn điều kiện 0 ≤ x ≤ 300. Chi phí bảo trì tòa nhà C(x) = 4000 - 14x + 0,04x2

Ta phải tìm 0 ≤ xo ≤ 300 sao cho C(xo) có giá trị nhỏ nhất.

Ta có C'(x) = -14 + 0,08x, 0 ≤ x ≤ 300. C'(x) = 0 <=> x = 175

Trên đoạn [0; 300] ta có C(0) = 4000; C(175) = 2775; C(300) = 3400

Từ đó ta thấy C(x) đạt giá trị nhỏ nhất khi x = 175. Chọn đáp án B.

Bài 10: GTLN của hàm số y = -x2 + 4x + 7 đạt được khi x bằng:

A. 11    

B. 4

C. 7    

D. 2

Lời giải:

y' = -2x + 4 = 0 <=> x = 2

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Dựa vào bảng biến thiên; GTLN của hàm số là 11 khi x= 2.

Chú ý. Cần phân biệt GTLN của hàm số (max y) với giá trị x để hàm số đạt được GTLN.

II. Bài tập tự luận có lời giải

Bài 1: GTLN của hàm số y = 2sinx + cos2x trên đoạn [0; π] là?

Lời giải:

Xét hàm số y=2sin x + cos 2x trên đoạn

y’=2cos x- 2sin 2x = 2cos x(1- 2sin x)

Trên đoạn [0; π]

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Giá trị lớn nhất của hàm số này trên [0; π] là y = 32 .

Bài 2: Cho hàm số y = f(x) xác định và liên tục trên R và có bảng biến thiên. Khẳng định nào sau đây là khẳng định đúng?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. Hàm số có đúng một cực trị.

B. Hàm số có giá trị cực tiểu bằng 1.

C. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng -1.

D. Hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 1

Lời giải:

Dựa vào định nghĩa, hàm số không tồn tại giá trị lớn nhất và giá trị nhỏ nhất. Hàm số đạt cực đại tại x=0 và cực tiểu tại x=1.

Bài 3: Xét hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Trong các khẳng định sau, khẳng định nào là đúng?

A. Hàm số có giá trị lớn nhất bằng 4.

B. Hàm số có giá trị cực đại bằng 4

C. Hàm số có giá trị lớn nhất bằng 0.

D. Hàm số có giá trị cực đại bằng 0

Lời giải:
Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng biến thiên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số không tồn tại giá trị lớn nhất. Hàm số có giá trị cực đại bằng 0.

Bài 4: Cho tấm nhôm hình vuông cạnh 12cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gập tấm nhôm lại như hình vẽ bên để được một cái hộp không nắp. Với giá trị nào của x thì hộp nhận được có thể tích lớn nhất?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Hình hộp có đáy là hình vuông cạnh: 12 - 2x

Chiều cao của hình hộp là: x

Thể tích hình hộp là y = x(12 - 2x)2

Bài toán đưa về tìm x ∈ (0; 6) để hàm số y = f(x) = x(12 - 2x)2 có giá trị lớn nhất.

y' = 1(12 - 2x)2 + x.2.(12 - 2x).(-2)

12x2 - 96x + 144;

y' xác định ∀ x ∈ (0; 6)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng biến thiên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số đạt giá trị lớn nhất tại x=2

Bài 5: Khu chung cư Royal City có 250 căn hộ cho thuê. Nếu người ta cho thuê x căn hộ thì lợi nhuận hàng tháng, tính theo triệu đồng, được cho bởi:

P(x) = -8x2 + 3200x - 80000. Hỏi lợi nhuận tối đa họ có thể đạt được là bao nhiêu?

Lời giải:

Ta có x ∈ (0; 250) ,P’(x) = -16x+3200.

Khi đó P’(x)=0 ⇔ -16x + 3200 = 0 ⇔ x = 200 (loại).

P(0)= - 8000; P(250) = 292 000

Do đó lợi nhuận tối đa họ thu được là P(250)=292000.

Bài 6: Một nhà máy sản xuất được 60000 sản phẩm trong một ngày và tổng chi phí sản xuất x sản phẩm được cho bởi:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hỏi nhà máy nên sản xuất bao nhiêu sản phẩm mỗi ngày để chi phí sản xuất là nhỏ nhất?

Lời giải:

Ta có x ∈ (0; 60000)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, hàm số đạt cực tiểu tại x = 50000.

Nên x=50000 là số sản phẩm cần sản xuất mỗi ngày để tối thiểu chi phí.

Bài 17: GTLN của hàm số y = sin2x - 3cosx trên đoạn [0; π] là?

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 18: GTNN của hàm số y = x3 + 3x2 - 9x + 1 trên đoạn [-4;4] là?

Lời giải:

Xét hàm số y = x3 + 3x2 - 9x + 1 trên đoạn [-4;4].

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y(1) = -4, y(-3) = 28; y(4) = 77; y(-4) = 21

GTNN của hàm số y = X3 - 9x + 1 trên đoạn [-4;4] là -4 khi x= 1

Bài 9: GTLN của hàm số y = x4 - 8x2 + 16 trên đoạn [-1;3] là?

Lời giải:

Xét hàm số y = x4 - 8x2 + 16 trên đoạn [-1;3]

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y(0) = 16, y(2) = 0; y(-1) = 9; y(3) = 25

GTLN của hàm số y = x4 - 8x + 16 trên đoạn [-1;3] là 25 khi x = 3.

Bài 10: GTNN của hàm số y = xx+2trên nửa khoảng (-2;4] là

Lời giải:

Xét hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có bảng biến thiên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số không có GTNN

III. Bài tập vận dụng

Bài 1 GTNN của hàm số y = x + 2 + 1x-1 trên khoảng (1; +∞) là?

Bài 2 Xét tính đồng biến, nghịch biến và tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

a) y = x2 trên đoạn [-3; 0];

b) y = x+1x-1 trên đoạn [3; 5].

Bài 3 Cho hàm sốGiải bài tập Toán 12 | Giải Toán lớp 12 có đồ thị như Hình 10. Hãy chỉ ra giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [-2; 3] và nêu cách tính.

Giải bài tập Toán 12 | Giải Toán lớp 12

Bài 4 Lập bảng biến thiên của hàm số f(x) = -11+x2Từ đó suy ra giá trị nhỏ nhất của f(x) trên tập xác định.

Bài 5 Tính giá trị lớn nhất và nhỏ nhất của hàm số:

a) y = x3 - 3x2 - 9x + 35 trên các đoạn [-4; 4] và [0; 5] ;

b) y = x4 - 3x2 + 2 trên các đoạn [0; 3] và [2; 5] ;

c) Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 trên các đoạn [2 ; 4] và [-3 ; -2] ;

d) Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 trên đoạn [-1 ; 1].

Bài 6 Trong số các hình chữ nhật có cùng chu vi 16cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Bài 7 Trong tất cả các hình chữ nhật có diện tích 48 m2, hãy xác định hình chữ nhật có chu vi nhỏ nhất.

Bài 8 Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số

a) y=x33x29x+35 trên các đoạn [4;4] và [0;5];

b) y=x43x2+2 trên các đoạn [0;3] và [2;5];

c) y=2x1x trên các đoạn [2;4] và [3;2];

d) y=54x trên đoạn [1;1].

Bài 9 Trong các hình chữ nhật có cùng chu vi 16 cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Bài 10 Trong tất cả các hình chữ nhật cùng có diện tích 48m2, hãy xác định hình chữ nhật có chu vi nhỏ nhất.

Xem thêm các bài Bài tập Toán lớp 12 hay, chi tiết khác:

Bài tập Sự đồng biến nghịch biến của hàm số

Bài tập Cực trị của hàm số

Bài tập Đường tiệm cận

Bài tập Khảo sát sự biến thiên và vẽ đồ thị hàm số

Bài tập Ôn tập chương 1

1 3,913 24/09/2022
Tải về