Trong các hàm số sau, hàm số đồng biến trên tập xác định của nó là: y=log (căn3 /2) của x

Lời giải Bài 39 trang 44 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 599 07/12/2024


Giải SBT Toán 11 Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 39 trang 44 SBT Toán 11 Tập 2: Trong các hàm số sau, hàm số đồng biến trên tập xác định của nó là:

A. y=log32x.

B. y = log0,5 x;

C. y = – logx;

D. y = lnx.

Đáp án đúng là: D

* Lời giải:

Cả 4 đáp án đều có tập xác định: D = (0; +∞).

Do e > 1 nên hàm số y = lnx đồng biến trên D = (0; +∞) hay hàm số y = lnx đồng biến trên tập xác định của nó.

* Phương pháp giải:

- Hàm số log cơ số a > 1 thì đồng biến; < 1 là nghịch biến

+ Nên đáp án A, B đều < 1 nên sẽ nghịch biến

+ Đáp án C là giá trị âm nên không thể đồng biến

* Lý thuyết

HÀM SỐ LOGARIT:

Định nghĩa logarit

Cho hai số dương a; b với a ≠ 1. Số α thỏa mãn đẳng thức aα = b được gọi là logarit cơ số a của b và kí hiệu là logab.

α=  logab  aα  =  b

– Chú ý: Không có logarit của số âm và số 0.

Tính chất của logarit

Cho hai số dương a và b; a ≠ 1. Ta có các tính chất sau đây:

loga1 = 0; logaa = 1

alogab    =b;  loga(aα)  =  α

Quy tắc tính logarit

Logarit của một tích

– Định lí 1. Cho ba số dương a; b1 ;b2 với a ≠ 1. Ta có:

loga(b1.b)2  =logab1+logab2

Logarit của một tích bằng tổng các logarit.

– Chú ý:

Định lí 1 có thể mở rộng cho tích n số dương:

Lý thuyết Lôgarit chi tiết – Toán lớp 12 (ảnh 1)

Logarit của một thương

– Định lí 2. Cho ba số dương a; b1 ;b2 với a ≠ 1. Ta có:

logab1b2=logab1logab2

Logarit của một thương bằng hiệu các logarit.

Đặc biệt: loga1b  =  logab( a > 0; b > 0; a ≠ 1)

Logarit của một lũy thừa

– Định lí 3. Cho hai số dương a; b và a ≠ 1 . Với mọi số α, ta có:

logabα  =  αlogab

Logarit của một lũy thừa bằng tích của số mũ với logarit của cơ số.

– Đặc biệt: logabn  =1nlogab

Đổi cơ số logarit

– Định lí 4. Cho ba số dương a; b; c với a ≠ 1; c ≠ 1, ta có:

logab=logcblogca

– Đặc biệt:

logab  =  1logba    (b1)logaαb  =  1αlogab    (α0)

Logarit thập phân. Logarit tự nhiên

Logarit thập phân

Logarit thập phân là logarit cơ số 10.

log10b thường được viết là logb hoặc lgb.

Logarit tự nhiên

– Logarit tự nhiên là logarit cơ số e. Logeb được viết là lnb.

HÀM SỐ MŨ: y = ax, (a > 0, a ≠ 1)

Tập xác định: D = R

Tập giá trị: T = (); +∝), nghĩa là khi giải phương trình mũ mà đặt t = af(x) thì t > 0

Tính đơn điệu:

+ Khi a > 1 thì hàm số y = ax đồng biến, khi đó ta luôn có: af(x) > ag(x) ⇔ f(x) > g(x).

+ Khi 0 < a < 1 thì hàm số y = ax nghịch biến, khi đó ta luôn có: af(x) > ag(x) ⇔ f(x) < g(x).

Đạo hàm:

(ax)' = ax.ln a ⇒ (au)' = u'.au.ln a

(ex)' = ex ⇒ (eu)' = eu.u'

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Đồ thị: Nhận trục hoành làm đường tiệm cận ngang.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xem thêm các bài viết liên quan hay, chi tiết

Hàm số mũ và hàm số lôgarit | Lý thuyết, công thức, các dạng bài tập và cách giải

Toán 12 Bài 4: Hàm số mũ. Hàm số lôgarit

50 Bài tập Lôgarit Toán 12 mới nhất

1 599 07/12/2024


Xem thêm các chương trình khác: