Vận dụng trang 55 Toán lớp 10 Tập 1 | Chân trời sáng tạo Giải Toán lớp 10

Lời giải Vận dụng trang 55 Toán lớp 10 Tập 1 Toán 10 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.

1 4,332 05/06/2023


Giải Toán lớp 10 Bài 2: Hàm số bậc hai

Vận dụng trang 55 Toán lớp 10 Tập 1: Trong bài toán ứng dụng, khi chơi trên sân cầu lông đơn, các lần phát cầu với thông tin như sau có được cho là hợp lệ không? (Các thông tin không được đề cập thì vẫn giữ như trong giả thiết bài toán trên).

a) Vận tốc xuất phát của cầu là 12m/s.

b) Vị trí phát cầu cách mặt đất là 1,3m.

Lưu ý: Các thông số về sân cầu lông được cho trong Hình 11.

Trong bài toán ứng dụng, khi chơi trên sân cầu lông đơn, các lần phát cầu với thông tin

Lời giải:

a)

Coi người chơi cầu lông có khuynh hướng phát cầu với góc 30 độ so với mặt đất, cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc ban đầu của cầu là 12 m/s (bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng).

Chọn hệ trục tọa độ như hình vẽ (vị trí rơi của cầu thuộc trục hoành và vị trí cầu rời mặt vợt thuộc trục tung).

Giải Toán 10 Bài 2: Hàm số bậc hai - Chân trời sáng tạo (ảnh 1)

Với g = 9,8 m/s2, góc phát cầu α = 30°, vận tốc ban đầu v0 = 12 m/s, phương trình quỹ đạo của cầu là:

y=9,8.x22.122.cos230o+tan30o.x+0,7=491080x2+33x+0,7(với x ≥ 0).

Khi x = 4, ta có y=491080.42+33.4+0,72,283> 1,524.

Như vậy, cầu đã vượt qua lưới. Điểm rơi của cầu là giao điểm của parabol và trục hoành nên giải phương trình:

491080x2+33x+0,7=0 ta được: x ≈ 13,84 và x2 ≈ –1,11.

Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất là 13,84 m.

Khoảng cách từ lưới đến điểm cầu rơi là: 13,84 – 4 = 9,84 (m)

Dựa vào các thông số về sân cầu lông đơn ta thấy:

Điểm biên trong cách lưới 1,98 m và điểm biển ngoài cách lưới là:

13,4020,76=5,94 (m)

Ta có: 9,84 m > 5,94 m. Do đó, cầu bay ra khỏi biên ngoài nên lần phát cầu bị hỏng.

b)

Coi người chơi cầu lông có khuynh hướng phát cầu với góc 30 độ so với mặt đất, cầu rời mặt vợt ở độ cao 1,3 m so với mặt đất và vận tốc ban đầu của cầu là 8 m/s (bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng).

Chọn hệ trục tọa độ như hình vẽ (vị trí rơi của cầu thuộc trục hoành và vị trí cầu rời mặt vợt thuộc trục tung).

Giải Toán 10 Bài 2: Hàm số bậc hai - Chân trời sáng tạo (ảnh 1)

Với g = 9,8 m/s2, góc phát cầu α = 30o, vận tốc ban đầu v0 = 8 m/s, phương trình quỹ đạo của cầu là:

y=9,8.x22.82.cos230o+tan30o.x+1,3=4,948x2+33x+1,3   (với x ≥ 0)

Khi x = 4, ta có y=4,948.42+33.4+1,31,976 > 1,524 .

Như vậy, cầu đã vượt qua lưới. Điểm rơi của cầu là giao điểm của parabol và trục hoành nên giải phương trình:

 4,948x2+33x+1,3=0 ta được: x ≈ 7,38 và x2 ≈ –1,725.

Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất là 7,38 m.

Khoảng cách từ lưới đến điểm cầu rơi là: 7,38 – 4 = 3,38 (m)

Dựa vào các thông số về sân cầu lông đơn ta thấy:

Điểm biên trong cách lưới 1,98 m và điểm biển ngoài cách lưới là:

13,4020,76=5,94 (m)

Ta có: 1,98 m < 3,38 m < 5,94 m. Do đó, cầu nằm trong biên nên lần phát cầu hợp lệ.

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Hoạt động khởi động trang 49 Toán lớp 10 Tập 1: Các hàm số này có chung đặc điểm gì? y = ax2; y = a(x – m)(x – n)...

Hoạt động khám phá 1 trang 49 Toán lớp 10 Tập 1: Khai triển biểu thức của các hàm số sau và sắp xếp theo thứ tự lũy thừa của x giảm dần...

Thực hành 1 trang 49 Toán lớp 10 Tập 1: Hàm số nào trong các hàm số đã cho ở hoạt động khám phá 1 là hàm số bậc hai...

Hoạt động khám phá 2 trang 49 Toán lớp 10 Tập 1: Xét hàm số: y = f(x) = x2 – 8x + 19 = (x – 4)2 + 3 có bảng giá trị...

Thực hành 2 trang 52 Toán lớp 10 Tập 1: Vẽ đồ thị hàm số y = x2 – 4x + 3 rồi so sánh đồ thị hàm số...

Hoạt động khám phá 3 trang 52 Toán lớp 10 Tập 1: Từ đồ thị của hàm số bậc hai cho ở hai hình sau, tìm khoảng đồng biến và nghịch biến của hàm số trong mỗi trường hợp...

Thực hành 3 trang 53 Toán lớp 10 Tập 1: Tìm khoảng đồng biến, khoảng nghịch biến của hàm số y = 2x2 – 6x + 11...

Vận dụng trang 55 Toán lớp 10 Tập 1: Trong bài toán ứng dụng, khi chơi trên sân cầu lông đơn, các lần phát cầu với thông tin như sau có được cho là hợp lệ không...

Bài 1 trang 56 Toán lớp 10 Tập 1: Hàm số nào sau đây là hàm số bậc hai y = 9x2 + 5x + 4...

Bài 2 trang 56 Toán lớp 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai...

Bài 3 trang 56 Toán lớp 10 Tập 1: Lập bảng biến thiên của hàm số y = x2 + 2x + 3. Hàm số này có giá trị...

Bài 4 trang 56 Toán lớp 10 Tập 1: Cho hàm số bậc hai y = f(x) = ax2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5...

Bài 5 trang 56 Toán lớp 10 Tập 1: Cho hàm số y = 2x2 + x + m. Hãy xác định giá trị của m...

Bài 6 trang 56 Toán lớp 10 Tập 1: Vẽ đồ thị các hàm số sau: y = 2x2 + 4x – 1...

Bài 7 trang 56 Toán lớp 10 Tập 1: Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12...

Bài 8 trang 57 Toán lớp 10 Tập 1: Tìm công thức của hàm số bậc hai có đồ thị như Hình 13...

Bài 9 trang 57 Toán lớp 10 Tập 1: Chiếc cầu dây văng một nhịp được thiết kế hai bên thành cầu có dạng parabol và được cố định bằng các dây cáp song song...

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Bài 2: Định lí côsin và định lí sin

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Xem thêm tài liệu Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 2: Hàm số bậc hai

1 4,332 05/06/2023


Xem thêm các chương trình khác: