Toán 8 Bài 4 (Cánh diều): Hình bình hành
Với giải bài tập Toán lớp 8 Bài 4: Hình bình hành sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 8 Bài 4.
Giải Toán 8 Bài 4: Hình bình hành
Bài giải Toán 8 Bài 4: Hình bình hành
Lời giải:
Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:
‒ Hình bình hành có:
+ Các cạnh đối song song và bằng nhau;
+ Các góc đối bằng nhau;
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
‒ Dấu hiệu nhận biết hình bình hành:
+ Tứ giác có các cặp cạnh đối song song với nhau là hình bình hành.
+ Tứ giác có các cặp cạnh đối bằng nhau là hình bình hành.
+ Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
+ Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
+ Tứ giác có các cặp góc đối bằng nhau là hình bình hành.
I. Định nghĩa
Lời giải:
Tứ giác ABCD ở Hình 35 có các cặp cạnh đối AB // CD, AD // BC.
II. Tính chất
Hoạt động 2 trang 106 Toán 8 Tập 1: Cho hình bình hành ABCD (Hình 37).
b) So sánh các cặp góc: và ; và .
Lời giải:
a) Do ABCD là hình bình hành nên AB // CD và AD // BC.
Vì AB // CD nên (so le trong).
Vì AD // BD nên (so le trong)
Xét ΔABD và ΔCDB có:
(chứng minh trên);
BD là cạnh chung;
(chứng minh trên)
Do đó ΔABD = ΔCDB (g.c.g)
Suy ra AB = CD và DA = BC (các cặp cạnh tương ứng).
b) Do ΔABD = ΔCDB (câu a) nên (cặp góc tương ứng)
Chứng minh tương tự câu a ta cũng có ΔABC = ΔCDA (g.c.g)
Suy ra (cặp góc tương ứng).
c) Xét ΔOAB và ΔOCD có:
(do AB // CD);
AB = CD (theo câu a);
(do AB // CD).
Do đó ΔOAB = ΔOCD (g.c.g)
Suy ra OA = OC và OB = OD (các cặp cạnh tương ứng).
Lời giải:
Do ABCD là hình bình hành nên ta có:
• CD = AB = 4 cm;
• AD = BC = 5 cm;
• ;
•
Mặt khác BC // AD (do ABCD là hình bình hành)
Nên (hai góc trong cùng phía)
Suy ra
Do đó .
III. Dấu hiệu nhận biết
Hoạt động 3 trang 106, 107 Toán 8 Tập 1: a) Cho tứ giác ABCD có AB = CD, BC = DA (Hình 39).
• Hai tam giác ABC và CDA có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: và ; và .
• ABCD có phải là hình bình hành hay không?
b) Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường (Hình 40).
• Hai tam giác ABO và CDO có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: và ; và .
• ABCD có phải là hình bình hành hay không?
Lời giải:
a) • Xét ΔABC và ΔCDA có:
AB = CD (giả thiết); BC = DA (giả thiết); AC là cạnh chung
Do đó ΔABC = ΔCDA (c.c.c)
Suy ra và (các cặp góc tương ứng).
• Ta có và ở vị trí so le trong nên AB // CD.
và ở vị trí so le trong nên AD // BC.
Tứ giác ABCD có AB // CD và AD // BC nên là hình bình hành.
b) • Xét ΔABO và ΔCDO có:
OA = OC (giả thiết); (đối đỉnh); OB = OD (giả thiết)
Do đó ΔABO = ΔCDO (c.g.c)
Suy ra (cặp góc tương ứng)
Hay .
Chứng minh tương tự ta cũng có: ΔCBO = ΔADO (c.g.c)
Suy ra (cặp góc tương ứng)
Hay .
• Ta có và ở vị trí so le trong nên AB // CD.
và ở vị trí so le trong nên AD // BC.
Tứ giác ABCD có AB // CD và AD // BC nên là hình bình hành.
Lời giải:
• Xét ΔOAD và ΔOCB có:
(giả thiết);
OA = OC (giả thiết);
(đối đỉnh)
Do đó ΔOAD = ΔOCB (g.c.g)
Suy ra OD = OB (hai cạnh tương ứng)
• Xét tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường
Do đó ABCD là hình bình hành.
Bài tập
c) Tứ giác ABCD là hình bình hành.
Lời giải:
a) Xét tứ giác ABCD có:
(tổng các góc của một tứ giác)
Mà , (giả thiết)
Nên
.
Vậy .
b) Ta có (hai góc kề bù)
Mà (câu a)
Suy ra
Mà hai góc trên ở vị trí đồng vị nên AD // BC.
c) Xét tứ giác ABCD có: , (giả thiết)
Do đó tứ giác ABCD là hình bình hành (dấu hiệu nhận biết).
Lời giải:
• Xét ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G (giả thiết) nên G là trọng tâm của ΔABC.
Suy ra ; (tính chất trọng tâm của tam giác) (1)
Mà P là trung điểm của GB (giả thiết) nên (2)
Q là trung điểm của GC (giả thiết) nên (3)
Từ (1), (2) và (3) suy ra GM = GP và GN = GQ.
• Xét tứ giác PQMN có: GM = GP và GN = GQ (chứng minh trên)
Do đó tứ giác PQMN có hai đường chéo MP và NQ cắt nhau tại trung điểm G của mỗi đường nên là hình bình hành.
Bài 3 trang 108 Toán 8 Tập 1: Cho hai hình bình hành ABCD và ABMN (Hình 42). Chứng minh:
Lời giải:
a) Vì ABCD là hình bình hành (giả thiết) nên AB = CD (tính chất) (1)
Vì ABMN là hình bình hành (giả thiết) nên AB = MN (tính chất) (2)
Từ (1), (2) suy ra CD = MN.
b) Vì ABCD là hình bình hành (giả thiết) nên (tính chất) (3)
Vì ABMN là hình bình hành (giả thiết) nên (tính chất) (4)
Mà (5)
Từ (3), (4) và (5) suy ra
Lời giải:
Xét tứ giác ABCD có: hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường nên là hình bình hành.
Do đó AB = CD = 100 (m).
– Qua điểm A kẻ đường thẳng d song song với BC, qua điểm B kẻ đường thẳng d’ song song với AC;
– Gọi E là giao điểm của d và d’;
Em hãy giải thích cách làm của bạn Hùng.
Lời giải:
• Vì d // BC (giả thiết) nên AE // BC;
Vì d’ // AC (giả thiết) nên BE // AC.
• Xét tứ giác ACBE có: AE // BC (chứng minh trên) và BE // AC (chứng minh trên)
Do đó tứ giác ACBE là hình bình hành
Suy ra (tính chất hình bình hành)
Bạn Hùng chứng minh được tứ giác ACBE là hình bình hành có các tính chất trên, đo độ dài các đoạn thẳng BE, AE và đo góc AEB. Từ đó, tính được độ dài các đoạn thẳng AC, BC và số đo góc ACB (Hình 45).
Lý thuyết Hình bình hành
1. Khái niệm
Hình bình hành là tứ giác có các cạnh đối song song.
2. Tính chất
Trong hình bình hành:
- Các cạnh đối bằng nhau;
- Các góc đối bằng nhau;
- Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
3. Dấu hiệu nhận biết
- Tứ giác có các cạnh đối bằng nhau là một hình bình hành.
- Tứ giác có một cặp cạnh đối song song và bằng nhau là một hình bình hành.
- Tứ giác có các góc đối bằng nhau là một hình bình hành.
- Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là một hình bình hành.
Ví dụ:
Hình a và c là hình bình hành do:
Hình a có các cặp cạnh đối bằng nhau.
Hình b có các đường chéo cắt nhau tại trung điểm của mỗi đường.
Xem thêm lời giải bài tập Toán 8 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 8 Cánh diều (hay nhất)
- Văn mẫu lớp 8 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 8 – Cánh diều
- Bố cục tác phẩm Ngữ văn lớp 8 – Cánh diều
- Tác giả tác phẩm Ngữ văn lớp 8 - Cánh diều
- Giải SBT Ngữ văn 8 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 8 – Cánh diều
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 8 – iLearn Smart World
- Giải sbt Tiếng Anh 8 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 8 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 8 ilearn Smart World
- Bài tập Tiếng Anh 8 iLearn Smart World theo Unit có đáp án
- Giải sgk Khoa học tự nhiên 8 – Cánh diều
- Lý thuyết Khoa học tự nhiên 8 – Cánh diều
- Giải sbt Khoa học tự nhiên 8 – Cánh diều
- Giải vbt Khoa học tự nhiên 8 – Cánh diều
- Giải sgk Lịch sử 8 – Cánh diều
- Lý thuyết Lịch sử 8 - Cánh diều
- Giải sbt Lịch sử 8 – Cánh diều
- Giải sgk Địa lí 8 – Cánh diều
- Lý thuyết Địa lí 8 - Cánh diều
- Giải sbt Địa lí 8 – Cánh diều
- Giải sgk Giáo dục công dân 8 – Cánh diều
- Lý thuyết Giáo dục công dân 8 – Cánh diều
- Giải sbt Giáo dục công dân 8 – Cánh diều
- Giải sgk Công nghệ 8 – Cánh diều
- Lý thuyết Công nghệ 8 - Cánh diều
- Giải sbt Công nghệ 8 – Cánh diều
- Giải sgk Tin học 8 – Cánh diều
- Lý thuyết Tin học 8 - Cánh diều
- Giải sbt Tin học 8 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 – Cánh diều