Sách bài tập Toán 7 Bài 2 (Cánh diều): Đa thức một biến. Nghiệm của đa thức một biến
Với giải sách bài tập Toán 7 Bài 2. Đa thức một biến. Nghiệm của đa thức một biến sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 Bài 2.
Giải sách bài tập Toán 7 Bài 2. Đa thức một biến. Nghiệm của đa thức một biến
Bài 17 trang 42 SBT Toán 7 Tập 1:
a) Tính lực F khi v = 15; v = 20.
Lời giải
a) Khi v = 15 thay vào công thức F = 30v2 ta có:
F = 30 . 152 = 30 . 225 = 6 750 (N).
Khi v = 20 thay vào công thức F = 30v2 ta có:
F = 30 . 202 = 12 000 (N).
Vậy lực F khi v = 15; v = 20 lần lượt là 6 750 N và 12 000 N.
b) Đổi 90 km/h = = 25 m/s.
Khi v = 25 thay vào công thức F = 30v2 ta có:
F = 30 . 252 = 18 750 (N).
Do 18 750 > 12 000 nên con thuyền không đi được trong gió bão với vận tốc 25 m/s.
Vậy con thuyền không đi được trong gió bão với vận tốc 90 km/h.
Bài 18 trang 42, 43 SBT Toán 7 Tập 1:
Nam: P = 0,057h – 0,022a – 4,23;
Nữ: Q = 0,041h – 0,018a – 2,69.
(Nguồn: Toán 7, NXB Giáo dục Việt Nam, năm 2020)
b) Em hãy tính dung tích chuẩn phổi của mình theo công thức trên.
Lời giải
a) Dung tích chuẩn phổi của bạn Chi (nữ) 13 tuổi, cao 150 cm là:
Q = 0,041 . 150 – 0,018 . 13 – 2,69 = 3,226 (l).
Dung tích chuẩn phổi của bạn Hùng (nam) 13 tuổi, cao 160 cm là:
P = 0,057 . 160 – 0,022 . 13 – 4,23 = 4,604 (l).
b) Học sinh thực hiện tương tự như phần a).
Bài 19 trang 43 SBT Toán 7 Tập 1:
Cho đa thức R(x) = x2 + 5x4 – 3x3 + x2 + 4x4 + 3x3 – x + 5.
a) Thu gọn và sắp xếp đa thức R(x) theo số mũ giảm dần của biến.
c) Tìm hệ số cao nhất và hệ số tự do của đa thức R(x)..
d) Tính R(‒1), R(0), R(1), R(‒a) (với a là một số).
Lời giải
a) Ta có:
R(x) = x2 + 5x4 – 3x3 + x2 + 4x4 + 3x3 – x + 5
= (5x4 + 4x4) + (– 3x3 + 3x3) + (x2 + x2) – x + 5
= 9x4 + 2x2 – x + 5.
Vậy thu gọn và sắp xếp đa thức R(x) theo số mũ giảm dần của biến ta được R(x) = 9x4 + 2x2 – x + 5.
b) Đa thức R(x) = 9x4 + 2x2 – x + 5 có bậc là 4 (do số mũ cao nhất của biến x trong đa thức là 4).
c) Đa thức R(x) = 9x4 + 2x2 – x + 5 có hệ số cao nhất là 9 và hệ số tự do là 5.
d) Ta có:
• R(‒1) = 9 . (‒1)4 + 2 . (‒1)2 – (‒1) + 5
= 9 . 1 + 2 . 1 + 1 + 5 = 17.
• R(0) = 9 . 04 + 2 . 02 – 0 + 5 = 5.
• R(1) = 9 . 14 + 2 . 12 – 1 + 5 = 15.
• R(‒a) = 9 . (‒a)4 + 2 . (‒a)2 – (‒a) + 5
= 9a4 + 2a2 + a + 5.
Vậy R(‒1) = 17; R(0) = 5; R(1) = 15 và R(‒a) = 9a4 + 2a2 + a + 5.
Bài 20 trang 43 SBT Toán 7 Tập 1:
Cho đa thức P(x) = 4x4 + 2x3 – x4 – x2.
a) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức P(x).
b) Mỗi phần tử của tập hợp có là nghiệm của đa thức P(x) không? Vì sao?
Lời giải
a) Ta có:
P(x) = 4x4 + 2x3 – x4 – x2
= (4x4 – x4) + 2x3 – x2
= 3x4 + 2x3 – x2
Đa thức P(x) có bậc là 4, hệ số cao nhất là 3 và hệ số tự do là 0.
b)
• Thay x = ‒1 vào P(x) = 3x4 + 2x3 – x2 ta được:
P(‒1) = 3 . (‒1)4 + 2 . (‒1)3 – (‒1)2
= 3 . 1 + 2 . (‒1) – 1
= 0.
Do đó x = ‒1 là nghiệm của đa thức P(x).
• Thay x = vào P(x) = 3x4+ 2x3 – x2 ta được:
.
Vì ≠ 0 nên x = không là nghiệm của đa thức P(x).
Vậy phần tử ‒1 của là nghiệm của đa thức P(x).
Bài 21 trang 43 SBT Toán 7 Tập 1:
a) 2 – 3x2 + 5x4 – x – x2 – 5x4 + 3x3; b) 2x3 – 6x7;
Lời giải
a) Ta có:
2 – 3x2 + 5x4 – x – x2 – 5x4 + 3x3
= (5x4 – 5x4) + 3x3 + (– 3x2 – x2) – x + 2
= 3x3 – 4x2 – x + 2.
Đa thức trên có bậc là 3 do số mũ cao nhất của biến x là 3.
b) Đa thức 2x3 – 6x7 có bậc là 7 do số mũ cao nhất của biến x là 7.
c) Đa thức 1 – x có bậc là 1 do số mũ cao nhất của biến x là 1.
d) Đa thức – 3 có bậc là 0 do số mũ cao nhất của biến x là 0.
e) Đa thức 0 không có bậc.
Bài 22 trang 43 SBT Toán 7 Tập 1:
a) x = , x = có là nghiệm của đa thức P(x) = 2x – 1 hay không;
b) x = 2, x = có là nghiệm của đa thức Q(x) = –3x + 6 hay không;
c) t = 0, t = 2 có là nghiệm của đa thức R(t) = t2 + 2t hay không;
d) t = 0, t = 1, t = –1 có là nghiệm của đa thức H(t) = t3 – t hay không.
Lời giải
a) Xét đa thức P(x) = 2x – 1.
• Thay x = vào P(x) ta được:
.
Do đó x = là nghiệm của đa thức P(x) = 2x – 1.
• Thay x = vào P(x) ta được:
.
Do đó x = không là nghiệm của đa thức P(x) = 2x – 1.
Vậy x = là nghiệm; x = không là nghiệm của đa thức P(x) = 2x – 1.
b) Xét đa thức Q(x) = –3x + 6.
• Thay x = 2 vào đa thức Q(x) ta được:
Q(2) = –3 . 2 + 6 = 0.
Do đó x = 2 là nghiệm của đa thức Q(x) = –3x + 6.
• Thay x = vào đa thức Q(x) ta được:
Do đó x = không là nghiệm của đa thức Q(x) = –3x + 6.
Vậy x = 2 là nghiệm; x = không là nghiệm của đa thức Q(x) = –3x + 6.
c) Xét đa thức R(t) = t2 + 2t.
• Thay t = 0 vào đa thức R(t) ta được:
R(0) = 02 + 2 . 0 = 0.
Do đó t = 0 là nghiệm của đa thức R(t) = t2 + 2t.
• Thay t = 2 vào đa thức R(t) ta được:
R(2) = 22 + 2 . 2 = 8 ≠ 0.
Do đó t = 2 không là nghiệm của đa thức R(t) = t2 + 2t.
Vậy t = 0 là nghiệm; t = 2 không là nghiệm của đa thức R(t) = t2 + 2t.
d) Xét đa thức H(t) = t3 – t.
• Thay t = 0 vào đa thức H(t) ta được:
H(0) = 03 – 0 = 0.
Do đó t = 0 là nghiệm của đa thức H(t) = t3 – t.
• Thay t = 1 vào đa thức H(t) ta được:
H(1) = 13 – 1 = 0.
Do đó t = 1 là nghiệm của đa thức H(t) = t3 – t.
• Thay t = –1 vào đa thức H(t) ta được:
H(‒1) = (‒1)3 – (‒1) = 0.
Do đó t = ‒1 là nghiệm của đa thức H(t) = t3 – t.
Vậy t = 0, t = 1, t = –1 đều là nghiệm của đa thức H(t) = t3 – t.
Bài 23* trang 43 SBT Toán 7 Tập 1:
Chứng tỏ các đa thức sau không có nghiệm:
Lời giải
a) Vì x2 ≥ 0 với mọi giá trị của x.
Nên x2 + 4 ≥ 4 với mọi giá trị của x.
Hay x2 + 4 > 0 với mọi giá trị của x.
Do đó đa thức x2 + 4 không có nghiệm với mọi giá trị của x.
Vậy đa thức x2 + 4 không có nghiệm.
b) Vì x2 ≥ 0 với mọi giá trị của x.
Nên 10x2 ≥ 0 với mọi giá trị của x.
Suy ra 10x2 + ≥ với mọi giá trị của x.
Hay 10x2 + > 0 với mọi giá trị của x.
Do đó đa thức 10x2 + không có nghiệm với mọi giá trị của x.
Vậy đa thức 10x2 + không có nghiệm.
c) Vì (x – 1)2 ≥ 0 với mọi giá trị của x.
Nên (x – 1)2 + 7 ≥ 7 với mọi giá trị của x.
Hay (x – 1)2 + 7 > 0 với mọi giá trị của x.
Do đó đa thức (x – 1)2 + 7 không có nghiệm với mọi giá trị của x.
Vậy đa thức (x – 1)2 + 7 không có nghiệm.
Bài 24 trang 44 SBT Toán 7 Tập 1:
I. 3x3 + x3 – x3; Ề. 2021x + (–2021x);
K. x4 – x4 + x4; U. 6x2 + x2 – x2.
Lời giải
Ta thu gọn các đa thức:
I. 3x3 + x3 – x3 = x3 = x3;
Ề. 2021x + (–2021x) = (2021 – 2021)x = 0.
K. x4 – x4 + x4 = x4 = x4;
U. 6x2 + x2 – x2 = x2 = x2.
x4 |
x3 |
0 |
x2 |
K |
I |
Ề |
U |
Vậy truyện thơ đó là “TRUYỆN KIỀU”.
Xem thêm lời giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 1. Biểu thức số. Biểu thức đại số
Bài 2. Đa thức một biến. Nghiệm của đa thức một biến
Bài 3. Phép cộng, phép trừ đa thức một biến
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất)– Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Giải sbt Ngữ văn lớp 7 – Cánh Diều
- Văn mẫu lớp 7 – Cánh Diều
- Soạn văn lớp 7 (ngắn nhất) – Cánh Diều
- Giải VBT Ngữ văn lớp 7 – Cánh diều
- Giải sgk Tiếng Anh 7 - Explore English
- Giải sgk Tiếng Anh 7 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 7 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 i-learn Smart World
- Bài tập Tiếng Anh 7 iLearn Smart World theo Unit có đáp án
- Giải sbt Tiếng Anh 7 - ilearn Smart World
- Giải sgk Lịch sử 7 – Cánh Diều
- Lý thuyết Lịch Sử 7 – Cánh Diều
- Giải sbt Lịch sử 7 – Cánh Diều
- Giải VBT Lịch sử 7 – Cánh diều
- Giải sgk Khoa học tự nhiên 7 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 7 – Cánh Diều
- Giải sbt Khoa học tự nhiên 7 – Cánh Diều
- Giải sgk Địa lí 7 – Cánh Diều
- Lý thuyết Địa Lí 7 – Cánh Diều
- Giải sbt Địa lí 7 – Cánh Diều
- Giải VBT Địa lí 7 – Cánh diều
- Giải sgk Tin học 7 – Cánh Diều
- Lý thuyết Tin học 7 – Cánh Diều
- Giải sbt Tin học 7 – Cánh Diều
- Giải sgk Giáo dục công dân 7 – Cánh Diều
- Lý thuyết Giáo dục công dân 7 – Cánh Diều
- Giải sbt Giáo dục công dân 7 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sgk Công nghệ 7 – Cánh Diều
- Lý thuyết Công nghệ 7 – Cánh Diều
- Giải sbt Công nghệ 7 – Cánh Diều
- Giải sgk Giáo dục thể chất 7 – Cánh Diều
- Giải sgk Âm nhạc 7 – Cánh Diều