Kiểm tra xem: a) x = 1/2 , x = -1/2 có là nghiệm của đa thức P(x) = 2x – 1 hay không

Lời giải Bài 22 trang 43 SBT Toán 7 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

1 557 31/12/2022


Giải SBT Toán 7 Cánh diều Bài 2. Đa thức một biến. Nghiệm của đa thức một biến

Bài 22 trang 43 SBT Toán 7 Tập 1:

Kiểm tra xem:

a) x = 12, x = 12 có là nghiệm của đa thức P(x) = 2x – 1 hay không;

b) x = 2, x = 12 có là nghiệm của đa thức Q(x) = –3x + 6 hay không;

c) t = 0, t = 2 có là nghiệm của đa thức R(t) = t2 + 2t hay không;

d) t = 0, t = 1, t = –1 có là nghiệm của đa thức H(t) = t3 – t hay không.

Lời giải

a) Xét đa thức P(x) = 2x – 1.

• Thay x = 12 vào P(x) ta được:

P12=2.121=0.

Do đó x = 12 là nghiệm của đa thức P(x) = 2x – 1.

• Thay x = 12 vào P(x) ta được:

P12=2.121=20.

Do đó x = 12 không là nghiệm của đa thức P(x) = 2x – 1.

Vậy x = 12 là nghiệm; x = 12 không là nghiệm của đa thức P(x) = 2x – 1.

b) Xét đa thức Q(x) = –3x + 6.

• Thay x = 2 vào đa thức Q(x) ta được:

Q(2) = –3 . 2 + 6 = 0.

Do đó x = 2 là nghiệm của đa thức Q(x) = –3x + 6.

• Thay x = 12 vào đa thức Q(x) ta được:

Q12=3.12+6=1520.

Do đó x = 12 không là nghiệm của đa thức Q(x) = –3x + 6.

Vậy x = 2 là nghiệm; x = 12 không là nghiệm của đa thức Q(x) = –3x + 6.

c) Xét đa thức R(t) = t2 + 2t.

• Thay t = 0 vào đa thức R(t) ta được:

R(0) = 02 + 2 . 0 = 0.

Do đó t = 0 là nghiệm của đa thức R(t) = t2 + 2t.

• Thay t = 2 vào đa thức R(t) ta được:

R(2) = 22 + 2 . 2 = 8 ≠ 0.

Do đó t = 2 không là nghiệm của đa thức R(t) = t2 + 2t.

Vậy t = 0 là nghiệm; t = 2 không là nghiệm của đa thức R(t) = t2 + 2t.

d) Xét đa thức H(t) = t3 – t.

• Thay t = 0 vào đa thức H(t) ta được:

H(0) = 03 – 0 = 0.

Do đó t = 0 là nghiệm của đa thức H(t) = t3 – t.

• Thay t = 1 vào đa thức H(t) ta được:

H(1) = 13 – 1 = 0.

Do đó t = 1 là nghiệm của đa thức H(t) = t3 – t.

• Thay t = –1 vào đa thức H(t) ta được:

H(‒1) = (‒1)3 – (‒1) = 0.

Do đó t = ‒1 là nghiệm của đa thức H(t) = t3 – t.

Vậy t = 0, t = 1, t = –1 đều là nghiệm của đa thức H(t) = t3 – t.

1 557 31/12/2022


Xem thêm các chương trình khác: