Sách bài tập Toán 7 Bài 11 (Kết nối tri thức): Định lí và chứng minh định lí
Với giải sách bài tập Toán 7 Bài 11: Định lí và chứng minh định lí sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 Bài 11.
Giải sách bài tập Toán lớp 7 Bài 11: Định lí và chứng minh định lí - Kết nối tri thức
Giải SBT Toán 7 trang 46 Tập 1
a) Hãy chỉ ra giả thiết và kết luận của định lí.
b) Vẽ hình minh họa và ghi giả thiết, kết luận bằng kí hiệu.
Lời giải:
a) Giả thiết: Một đường thẳng cắt hai đường thẳng song song.
Kết luận: Hai góc so le trong tạo thành bằng nhau.
b)
Giả thiết: a // b; c cắt a tại A, c cắt b tại B, tạo thành một cặp góc so le trong .
Kết luận: .
a) Hãy chỉ ra giả thiết và kết luận của định lí.
b) Vẽ hình minh họa và ghi giả thiết, kết luận bằng kí hiệu.
Lời giải:
a) Giả thiết: Một đường thẳng cắt hai đường thẳng tạo thành cặp góc so le trong bằng nhau.
Kết luận: hai đường thẳng đó song song.
b)
Giả thiết: c cắt a tại A, c cắt b tại B, tạo thành cặp góc so le trong và
Kết luận: a // b.
Lời giải:
Giả thiết:
- Hai góc xOy; x’Oy’ là hai góc đối đỉnh.
- Ou là tia phân giác của góc xOy, Ou’ là tia đối của tia Ou.
Kết luận: Ou’ là tia phân giác của góc x’Oy’.
Chứng minh định lí:
Ta có:
và là hai góc đối đỉnh nên = .
và là hai góc đối đỉnh nên = .
Lại có: Ou là tia phân giác của nên = .
Suy ra: = .
Do đó, Ou’ là tia phân giác của .
Vậy Ou’ là tia phân giác của (điều phải chứng minh).
a) Hai góc cùng phụ với một góc thứ ba thì bằng nhau.
b) Hai góc cùng bù với một góc thứ ba thì bằng nhau.
Lời giải:
a)
Giả thiết:
;
Kết luận:
Chứng minh:
Ta có: suy ra, (1)
suy ra, (2)
Từ (1) và (2) suy ra: =
Vậy
b)
Giả thiết: ;.
Kết luận:
Chứng minh:
Ta có: suy ra, (3)
suy ra, (2)
Từ (1) và (2) suy ra: =
Vậy
Lời giải:
Vì Ou là tia phân giác của góc xOy nên . Hay
Vì Ov là tia phân giác của góc yOz nên . Hay
Ta có: .
Mà là góc vuông nên = 90o.
Do đó, (1)
Mà có cạnh chung là Oy (2)
Từ (1) và (2) suy ra là hai góc kề bù.
Lời giải:
Giả thiết: a // b, c cắt a.
Kết luận: c cắt b.
Chứng minh: Giả sử c cắt a tại một điểm A. Nếu c không cắt b thì c song óng với b nên qua điểm A có hai đường thẳng a và c cùng song song với đường thẳng b do đó, theo tiên đề Euclid, c phải trùng với a. Nhưng theo giả thiết, c khác a vì c cắt a, vậy không thể có c không cắt b.
Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 12: Tổng các góc trong một tam giác
Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Bài 15: Các trường hợp bằng nhau của tam giác vuông
Xem thêm tài liệu Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Lịch sử 7 – Kết nối tri thức
- Lý thuyết Lịch Sử 7 – Kết nối tri thức
- Giải sbt Lịch sử 7 – Kết nối tri thức
- Giải VTH Lịch sử 7 – Kết nối tri thức
- Soạn văn lớp 7 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Soạn văn lớp 7 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Văn mẫu lớp 7 – Kết nối tri thức
- Giải VTH Ngữ văn lớp 7 – Kết nối tri thức
- Giải sgk Địa Lí 7 – Kết nối tri thức
- Lý thuyết Địa Lí 7 – Kết nối tri thức
- Giải sbt Địa lí 7 – Kết nối tri thức
- Giải VTH Địa lí 7 – Kết nối tri thức
- Giải sgk Tiếng Anh 7 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 7 Global Success - Kết nối tri thức
- Bài tập Tiếng Anh 7 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 7 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 Global success
- Giải sgk Giáo dục công dân 7 – Kết nối tri thức
- Lý thuyết GDCD 7 – Kết nối tri thức
- Giải sbt Giáo dục công dân 7 – Kết nối tri thức
- Giải vth Giáo dục công dân 7 – Kết nối tri thức
- Giải sgk Khoa học tự nhiên 7 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm lớp 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Công nghệ 7 – Kết nối tri thức
- Lý thuyết Công nghệ 7 – Kết nối tri thức
- Giải sbt Công nghệ 7 – Kết nối tri thức
- Giải VTH Công nghệ 7 – KNTT
- Giải sgk Tin học 7 – Kết nối tri thức
- Lý thuyết Tin học 7 – Kết nối tri thức
- Giải sbt Tin học 7 – Kết nối tri thức
- Giải VTH Tin học 7 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 7 – Kết nối tri thức
- Giải sgk Âm nhạc 7 – Kết nối tri thức