Luyện tập 7 trang 22 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Lời giải Luyện tập 7 trang 22 Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 282 09/11/2023


Giải Toán 11 Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Luyện tập 7 trang 22 Toán 11 Tập 2: Cho hai đường thẳng song song d1 và d2. Trên d1 lấy 17 điểm phân biệt, trên d2 lấy 20 điểm phân biệt. Chọn ngẫu nhiên 3 điểm, tính xác suất để các điểm này tạo thành 3 đỉnh của một tam giác.

Lời giải:

⦁ Tất cả có 17 + 20 = 37 điểm phân biệt nằm trên hai đường thẳng d1 và d2. Mỗi cách chọn 3 điểm trong 37 điểm là một tổ hợp chập 3 của 37 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 3 của 37 và nΩ=C373 = 7 770.

⦁ Xét các biến cố:

H: “Ba đỉnh của tam giác là 3 điểm của cả hai đường thẳng d1 và d2”.

A: “Trong ba đỉnh của tam giác có 1 điểm thuộc d1, 2 điểm thuộc d2

B: “Trong ba đỉnh của tam giác có 2 điểm thuộc d1, 1 điểm thuộc d2”.

Khi đó H = A ∪ B và A ∩ B = ∅.

Do hai biến cố A và B xung khắc nên n(H) = n(A) + n(B).

Số kết quả thuận lợi cho biến cố A là: n(A) = C171C202 = 3 230

Số kết quả thuận lợi cho biến cố B là: n(B) = C172C201 = 2 720

Số các kết quả thuận lợi cho biến cố H là:

n(H) = n(A) + n(B) = 3 230 + 2 720 = 5 950.

⦁ Vậy xác suất của biến cố H là: P(H) = nHnΩ=5  9507  770=85111.

1 282 09/11/2023


Xem thêm các chương trình khác: