Giải Toán 9 trang 82 Tập 1 Kết nối tri thức

Với giải bài tập Toán lớp 9 trang 82 trong Bài tập cuối chương 4 trang 81 sách Kết nối tri thức Tập 1 hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán lớp 9 trang 82 Tập 1.

1 225 20/04/2024


Giải Toán 9 trang 82 Tập 1

Bài 4.28 trang 82 Toán 9 Tập 1: Một cây cao bị gãy, ngọn cây đổ xuống mặt đất. Ba điểm: gốc cây, điểm gãy, ngọn cây tạo thành một tam giác vuông. Đoạn cây gãy tạo với mặt đất góc 20° và chắn ngang lối đi một đoạn 5 m (H.4.36). Hỏi trước khi bị gãy, cây cao khoảng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Bài 4.28 trang 82 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Lời giải:

Giả sử hình ảnh cây bị gãy mô tả bởi hình vẽ như dưới đây:

Bài 4.28 trang 82 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Xét ∆ABC vuông tại A, ta có:

⦁ AC = AB.tan20° = 5.tan20° ≈ 1,8 (m);

cosB=ABBC, suy ra BC=ABcosα=5cos20°5,3 (m).

Khi đó: AC + CB ≈ 1,8 + 5,3 = 7,1 (m).

Vậy trước khi bị gãy, cây cao khoảng 7,1 m.

Bài 4.29 trang 82 Toán 9 Tập 1: Cho tam giác ABC vuông tại A, có B^=α (H.4.37).

a) Hãy viết các tỉ số lượng giác sinα, cosα.

b) Sử dụng định lí Pythagore, chứng minh rằng sin2α + cos2α = 1.

Bài 4.29 trang 82 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Lời giải:

a) Theo định nghĩa tỉ số lượng giác sin và cos, ta có:

sinα=sinB=ACBCcosα=cosB=ABBC.

b) Ta có: sin2α+cos2α=ACBC2+ABBC2=AC2+AB2BC2.

Áp dụng định lí Pythagore cho ∆ABC vuông tại A, ta có: BC2 = AB2 + AC2

Do đó: sin2α+cos2α=AC2+AB2BC2=BC2BC2=1.

Vậy sin2α + cos2α = 1.

Bài 4.30 trang 82 Toán 9 Tập 1: ĐỐ VUI. Chu vi Trái Đất bằng bao nhiêu?

Vào khoảng năm 200 trước Công nguyên, Eratosthenes (Ơ-ra-tô-xten), một nhà toán học và thiên văn học người Hy Lạp, đã ước lượng được "chu vi" của Trái Đất (chu vi của đường Xích Đạo) nhờ hai quan sát sau:

1. Hồi đó, hằng năm cứ vào trưa ngày Hạ chí (21/6), người ta thấy tia sáng mặt trời chiếu thẳng xuống đáy một cái giếng sâu nổi tiếng ở thành phố Syene (Xy-en), tức là tia sáng chiếu thẳng đứng.

2. Cũng vào trưa một ngày Hạ chí, ở thành phố Alexandria (A-lếch-xăng-đri-a) cách Syene 800 km, Eratosthenes thấy một tháp cao 25 m có bóng trên mặt đất dài 3,1 m.

Bài 4.30 trang 82 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Từ hai quan sát trên, ông có thể tính xấp xỉ "chu vi" của Trái Đất như thế nào? (trên Hình 4.38, điểm O là tâm Trái Đất, điểm S tượng trưng cho thành phố Syene, điểm A tượng trưng cho thành phố Alexandria, điểm H là đỉnh của tháp, bóng của tháp trên mặt đất được coi là đoạn thẳng AB).

Lời giải:

Theo em, nhà toán học và thiên văn học Eratosthenes đã tính xấp xỉ "chu vi" của Trái Đất như sau:

Các tia sáng mặt trời chiếu thẳng đứng, nên ta coi các tia sáng BH, OS song song với nhau. Khi đó AOS^=BHA^(hai góc so le trong).

Xét ∆ABH vuông tại A, ta có:

tanBHA^=ABAH=3,125=31250, suy ra BHA^7°4'. Do đó AOS^7°4'.

Xét ∆OAS vuông tại S, ta có:

sinAOS^=ASOA, suy ra OA=ASsinAOS^800sin7°4'6  502,79 (km).

Khi đó, “chu vi” của Trái Đất khoảng:

2π.OA ≈ 2 . 3,14 . 6 502,79 ≈ 40 838 (km).

Xem thêm lời giải bài tập Toán 9 sách Kết nối tri thức hay, chi tiết khác:

1 225 20/04/2024