Giải Toán 9 Bài 20 (Kết nối tri thức): Định lí Viète và ứng dụng
Với giải bài tập Toán 9 Bài 20: Định lí Viète và ứng dụng sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 9.
Giải bài tập Toán 9 Bài 20: Định lí Viète và ứng dụng
Mở đầu trang 21 Toán 9 Tập 2: Bác An có 40 m hàng rào lưới thép. Bác muốn dùng nó để rào xung quanh một mảnh đất trống (đủ rộng) thành một mảnh vườn hình chữ nhật có diện tích 96 m2 để trồng rau. Tính chiều dài và chiều rộng của mảnh vườn đó.
Lời giải:
Sau bài học này, chúng ta sẽ giải quyết được bài toán trên như sau:
Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x2 (m).
Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x2 (m) và x1x2 (m2).
Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn là 40 : 2 = 20 (m), do đó x1 + x2 = 20.
Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.
Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.
Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và
Do đó phương trình có hai nghiệm là:
Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).
HĐ1 trang 21 Toán 9 Tập 2: Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0). Giả sử ∆ = b2 – 4ac ≥ 0.
Nhắc lại công thức tính hai nghiệm x1, x2 của phương trình trên.
Lời giải:
Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).
⦁ Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt:
⦁ Nếu ∆ = 0 thì phương trình có nghiệm kép:
HĐ2 trang 21 Toán 9 Tập 2: Từ kết quả HĐ1, hãy tính x1 + x2 và x1x2.
Lời giải:
Ta có:
⦁
⦁
Luyện tập 1 trang 22 Toán 9 Tập 2: Không giải phương trình, hãy tính biệt thức ∆ (hoặc ∆’) để kiểm tra điều kiện có nghiệm, rồi tính tổng và tích các nghiệm của các phương trình bậc hai sau:
a) 2x2 – 7x + 3 = 0;
b) 25x2 – 20x + 4 = 0;
c)
Lời giải:
a) 2x2 – 7x + 3 = 0
Ta có ∆ = (–7)2 – 4.2.3 = 25 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
b) 25x2 – 20x + 4 = 0
Ta có ∆’ = (–10)2 – 25.4 = 0 nên phương trình có hai nghiệm trùng nhau x1, x2.
Theo định lí Viète, ta có:
c)
Ta có nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
Tranh luận trang 22 Toán 9 Tập 2: Tròn nói: “Không cần giải, tớ biết ngay tổng và tích hai nghiệm của phương trình x2 – x + 1 = 0 đều bằng 1”.
Ý kiến của em thế nào?
Lời giải:
Ta có ∆ = (–1)2 – 4.1.1 = –3 < 0 nên phương trình vô nghiệm.
Do đó, không tính được tổng và tích các nghiệm của phương trình x2 – x + 1 = 0.
Vậy bạn Tròn nói sai.
Luyện tập 1 trang 22 Toán 9 Tập 2: Không giải phương trình, hãy tính biệt thức ∆ (hoặc ∆’) để kiểm tra điều kiện có nghiệm, rồi tính tổng và tích các nghiệm của các phương trình bậc hai sau:
a) 2x2 – 7x + 3 = 0;
b) 25x2 – 20x + 4 = 0;
c)
Lời giải:
a) 2x2 – 7x + 3 = 0
Ta có ∆ = (–7)2 – 4.2.3 = 25 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
b) 25x2 – 20x + 4 = 0
Ta có ∆’ = (–10)2 – 25.4 = 0 nên phương trình có hai nghiệm trùng nhau x1, x2.
Theo định lí Viète, ta có:
c)
Ta có nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
HĐ3 trang 22 Toán 9 Tập 2: Cho phương trình 2x2 – 7x + 5 = 0.
a) Xác định các hệ số a, b, c rồi tính a + b + c.
b) Chứng tỏ rằng x1 = 1 là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại x2 của phương trình.
Lời giải:
a) Ta có a = 2, b = –7, c = 5 và a + b + c = 2 + (–7) + 5 = 0.
b) Thay x1 = 1 vào phương trình 2x2 – 7x + 5 = 0, ta được:
2.12 – 7.1 + 5 = 0 (đúng).
Vậy x1 = 1 là một nghiệm của phương trình 2x2 – 7x + 5 = 0.
c) Theo định lí Viète, ta có:
Hay suy ra
Vậy
HĐ4 trang 22 Toán 9 Tập 2: Cho phương trình 3x2 + 5x + 2 = 0.
a) Xác định các hệ số a, b, c rồi tính a – b + c.
b) Chứng tỏ rằng x1 = –1 là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại x2 của phương trình.
Lời giải:
a) Ta có a = 3, b = 5, c = 2 và a – b + c = 3 – 5 + 2 = 0.
b) Thay x1 = –1 vào phương trình 3x2 + 5x + 2 = 0, ta được:
3.(–1)2 + 5.(–1) + 2 = 0 (đúng).
Vậy x1 = –1 là một nghiệm của phương trình 3x2 + 5x + 2 = 0.
c) Theo định lí Viète, ta có:
Hay suy ra
Vậy
Luyện tập 2 trang 23 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau:
a) 3x2 – 11x + 8 = 0;
b) 4x2 + 15x + 11 = 0;
c) biết phương trình có một nghiệm là
Lời giải:
a) Ta có a + b + c = 3 + (–11) + 8 = 0 nên phương trình có hai nghiệm x1 = 1,
b) Ta có a – b + c = 4 – 15 + 11 = 0 nên phương trình có hai nghiệm x1 = –1,
c) Giả sử phương trình có một nghiệm và nghiệm còn lại là x2.
Theo định lí Viète, ta có: x1x2 = 2.
Do đó
Vậy phương trình có hai nghiệm
Thử thách nhỏ trang 23 Toán 9 Tập 2: Vuông đố Tròn: “Hãy tìm một phương trình bậc hai mà tổng và tích các nghiệm của phương trình là hai số đối nhau.”
Tròn trả lời: “Tớ tìm ra rồi! Đó là phương trình x2 + x + 1 = 0”.
Em có đồng ý với ý kiến của Tròn không? Vì sao?
Lời giải:
Xét phương trình x2 + x + 1 = 0 có ∆ = 12 – 4.1.1 = –3 < 0.
Do đó phương trình trên vô nghiệm.
Vậy em không đồng ý với ý kiến của Tròn.
HĐ5 trang 23 Toán 9 Tập 2: Giả sử hai số có tổng S = 5 và tích P = 6. Thực hiện các bước sau để lập phương trình bậc hai nhận hai số đó làm nghiệm.
a) Gọi một số là x. Tính số kia theo x.
b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.
Lời giải:
a) Số còn lại là 5 – x.
b) Tích của hai số x và 5 – x là: x(5 – x).
Theo bài, ta có:
x(5 – x) = 6
5x – x2 = 6
x2 – 5x + 6 = 0.
Ta có ∆ = (–5)2 – 4.1.6 = 1 > 0.
Do đó phương trình có hai nghiệm phân biệt:
Luyện tập 3 trang 24 Toán 9 Tập 2: Tìm hai số biết tổng của chúng bằng –11, tích của chúng bằng 28.
Lời giải:
Hai số cần tìm là hai nghiệm của phương trình x2 + 11x + 28 = 0.
Ta có ∆ = 112 – 4.1.28 = 9 > 0 và
Suy ra phương trình có hai nghiệm
Vậy hai số cần tìm là –4 và –7.
HĐ5 trang 23 Toán 9 Tập 2: Giả sử hai số có tổng S = 5 và tích P = 6. Thực hiện các bước sau để lập phương trình bậc hai nhận hai số đó làm nghiệm.
a) Gọi một số là x. Tính số kia theo x.
b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.
Lời giải:
a) Số còn lại là 5 – x.
b) Tích của hai số x và 5 – x là: x(5 – x).
Theo bài, ta có:
x(5 – x) = 6
5x – x2 = 6
x2 – 5x + 6 = 0.
Ta có ∆ = (–5)2 – 4.1.6 = 1 > 0.
Do đó phương trình có hai nghiệm phân biệt:
Vận dụng trang 24 Toán 9 Tập 2: Giải bài toán trong tình huống mở đầu.
Lời giải:
Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x2 (m).
Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x2 (m) và x1x2 (m2).
Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn là 40 : 2 = 20 (m), do đó x1 + x2 = 20.
Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.
Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.
Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và
Do đó phương trình có hai nghiệm là:
Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).
Bài 6.23 trang 24 Toán 9 Tập 2: Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:
а) x2 – 12x + 8 = 0;
b) 2x2 + 11x – 5 =0;
c) 3x2 – 10 = 0;
d) x2 – x + 3 = 0.
Lời giải:
a) x2 – 12x + 8 = 0.
Ta có: ∆’ = (–6)2 – 1.8 = 28 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
x1 + x2 = 12; x1x2 = 8.
b) 2x2 + 11x – 5 =0.
Ta có: ∆ = 112 – 4.2.(–5) = 161 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
c) 3x2 – 10 = 0.
Ta có: ∆’ = 02 – 3.(–10) = 30 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
d) x2 – x + 3 = 0.
Ta có: ∆ = (–1)2 – 4.1.3 = –11 < 0 nên phương trình vô nghiệm.
Bài 6.24 trang 24 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau:
а) 2x2 – 9x + 7 = 0;
b) 3x2 + 11x + 8 = 0;
c) 7x2 – 15x + 2 = 0, biết phương trình có một nghiệm x1 = 2.
Lời giải:
a) Ta có: a + b + c = 2 + (–9) + 7 = 0 nên phương trình có hai nghiệm: x1 = 1;
b) Ta có: a – b + c = 3 – 11 + 8 = 0 nên phương trình có hai nghiệm: x1 = –1;
c) Gọi x2 là nghiệm còn lại của phương trình.
Theo định lí Viète, ta có:
Do đó
Vậy phương trình có hai nghiệm là x1 = 2 và
Bài 6.25 trang 24 Toán 9 Tập 2: Tìm hai số u và v, biết:
a) u + v = 20, uv = 99;
b) u + v = 2, uv = 15.
Lời giải:
a) Vì u + v = 20, uv = 99 nên u và v là hai nghiệm của phương trình x2 – 20x + 99 = 0.
Ta có ∆’ = (–10)2 – 1.99 = 1 > 0 và
Suy ra phương trình có hai nghiệm
Vậy u = 11; v = 9 hoặc u = 9; v = 11.
b) Vì u + v = 2, uv = 15 nên u và v là hai nghiệm của phương trình x2 – 2x + 15 = 0.
Ta có ∆’ = (–1)2 – 1.15 = –14 < 0 nên phương trình trên vô nghiệm.
Vậy không có số u và v nào thỏa mãn yêu cầu đề bài.
Bài 6.26 trang 24 Toán 9 Tập 2: Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a(x – x1)(x – x2).
Áp dụng: Phân tích các đa thức sau thành nhân tử:
a) x2 + 11x + 18;
b) 3x2 + 5x – 2.
Lời giải:
⦁ Phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 nên theo định lí Viète, ta có:
và
Suy ra b = –a(x1 + x2) và c = ax1x2.
Do đó:
ax2 + bx + c = ax2 – a(x1 + x2)x + ax1x2
= ax2 – ax1x – ax2x + ax1x2
= ax(x – x1) – ax2(x – x1)
= a(x – x1)(x – x2).
Vậy nếu phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử là: ax2 + bx + c = a(x – x1)(x – x2).
⦁ Áp dụng: Phân tích các đa thức thành nhân tử:
a) x2 + 11x + 18.
Phương trình x2 + 11x + 18 = 0 có ∆ = 112 – 4.1.18 = 49 > 0 và
Do đó phương trình có hai nghiệm phân biệt là:
Vậy đa thức x2 + 11x + 18 phân tích được thành nhân tử như sau:
x2 + 11x + 18 = (x + 2)(x + 9).
b) 3x2 + 5x – 2.
Phương trình 3x2 + 5x – 2 = 0 có ∆ = 52 – 4.3.(–2) = 49 > 0 và
Do đó phương trình có hai nghiệm phân biệt là:
Vậy đa thức 3x2 + 5x – 2 phân tích được thành nhân tử như sau:
Bài 6.27 trang 24 Toán 9 Tập 2: Một bể bơi hình chữ nhật có diện tích 300 m2 và chu vi là 74 m. Tính các kích thước của bể bơi này.
Lời giải:
Gọi hai kích thước của bể bơi hình chữ nhật là x1; x2 (m).
Ta có nửa chu vi và diện tích bể bơi hình chữ nhật lần lượt là x1 + x2 (m) và x1x2 (m2).
Theo bài, bể bơi hình chữ nhật có chu vi 74 m nên nửa chu vi bể bơi hình chữ nhật là 74 : 2 = 37 (m), do đó x1 + x2 = 37.
Diện tích bể bơi hình chữ nhật là 300 m2, do đó x1x2 = 300.
Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 37x + 300 = 0.
Ta có ∆ = (–37)2 – 4.1.300 = 169 > 0 và
Suy ra phương trình trên có hai nghiệm phân biệt:
Vậy chiều dài và chiều rộng của bể bơi lần lượt là 25 m và 12 m (do chiều dài luôn lớn hơn chiều rộng).
Xem thêm Lời giải bài tập Toán 9 Kết nối tri thức hay, chi tiết khác:
Bài 21: Giải bài toán bằng cách lập phương trình
Xem thêm các chương trình khác:
- Soạn văn 9 Kết nối tri thức (hay nhất)
- Văn mẫu 9 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 9 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 9 - Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 9 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn 9 – Kết nối tri thức
- Soạn văn 9 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 9 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 9 - Global success
- Trọn bộ Từ vựng Tiếng Anh 9 Global success đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh 9 Global success đầy đủ nhất
- Giải sbt Tiếng Anh 9 – Global Success
- Giải sgk Khoa học tự nhiên 9 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 9 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 9 – Kết nối tri thức
- Giải sgk Lịch sử 9 – Kết nối tri thức
- Giải sbt Lịch sử 9 – Kết nối tri thức
- Giải sgk Địa lí 9 – Kết nối tri thức
- Giải sbt Địa lí 9 – Kết nối tri thức
- Giải sgk Tin học 9 – Kết nối tri thức
- Giải sbt Tin học 9 – Kết nối tri thức
- Giải sgk Công nghệ 9 – Kết nối tri thức
- Giải sgk Giáo dục công dân 9 – Kết nối tri thức
- Giải sbt Giáo dục công dân 9 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 9 – Kết nối tri thức