Giải Toán 11 trang 57 Tập 2 Cánh diều

Với giải bài tập Toán 11 trang 57 Tập 2 trong Bài tập cuối chương 6 trang 55 sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 57 Tập 2.

1 247 14/11/2023


Giải Toán 11 trang 57 Tập 2

Bài 12 trang 57 Toán 11 Tập 2: Tập nghiệm của bất phương trình log14x>2 là:

A. (–∞; 16).

B. (16; +∞).

C. (0; 16).

D. (–∞; 0).

Lời giải:

Đáp án đúng là: C

Ta có log14x>20<x<1420<x<16

Vậy bất phương trình đã cho có tập nghiệm là (0; 16).

Bài 13 trang 57 Toán 11 Tập 2: Cho ba số thực dương a, b, c khác 1 và đồ thị ba hàm số mũ y = ax, y = bx, y = cx được cho bởi Hình 14.

Bài 13 trang 57 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Kết luận nào sau đây là đúng đối với ba số a, b, c?

A. c < a < b.

B. c < b < a.

C. a < b < c.

D. b < c < a.

Lời giải:

Đáp án đúng là: A

Từ các đồ thị hàm số trên Hình 14 ta thấy:

⦁ Hàm số y = cx nghịch biến trên ℝ nên 0 < c < 1;

⦁ Hai hàm số y = ax và y = bx đồng biến trên ℝ nên a > 1 và b > 1.

Bài 13 trang 57 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Thay cùng giá trị của x = x0 (với x0 > 0) vào hai hàm số y = ax và y = bx ta thấy nên a < b

Suy ra c < a < b.

Bài 14 trang 57 Toán 11 Tập 2: Cho ba thực dương a, b, c khác 1 và đồ thị ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c?

A. c < a < b.

B. c < b < a.

C. a < b < c.

D. b < c < a.

Bài 14 trang 57 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Đáp án đúng là: D

Từ các đồ thị hàm số trên Hình 15 ta thấy:

⦁ Hàm số y = logax đồng biến trên (0; +∞) nên a > 1;

⦁ Hai hàm số y = logbx và y = logcx nghịch biến trên (0; +∞) nên 0 < b < 1; 0 < c < 1.

Bài 14 trang 57 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Thay cùng giá trị của x = x0 (với x0 ∈ (0; +∞)) vào hai hàm số ta thấy logbx0 > logcx0

Mà 0 < b < 1; 0 < c < 1 nên b < c.

Suy ra b < c < a.

Bài 15 trang 57 Toán 11 Tập 2: Viết các biểu thức sau về lũy thừa cơ số a:

a) A=5153với a = 5. b) B=42543 với a=2.

Lời giải:

a) Ta có: A=5153=515123=55123=5123=51213=516

Vậy A=a16.

b) a=2a2=2

Ta có: B=42543=22215413=2115223=22315=a22315=a4615

Vậy B=a4615.

Bài 16 trang 57 Toán 11 Tập 2: Cho x, y là các số thực dương. Rút gọn biểu thức sau:

A=x54y+xy54x4+y4; B=xyyx57354.

Lời giải:

Ta có:

A=x54y+xy54x4+y4=x14xy+xyy14x14+y14=xyx14+y14x14+y14=xy;

Bài 16 trang 57 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Bài 17 trang 57 Toán 11 Tập 2: Tìm tập xác định của mỗi hàm số sau:

a) y=52x3; b) y=255x;

c) y=x1lnx; d) y=1log3x.

Lời giải:

a) Hàm số y=52x3 xác định ⇔ 2x – 3 ≠ 0 ⇔2x ≠ 3 ⇔ x ≠ log23.

Vậy tập xác định của hàm số y=52x3là D = ℝ \ {log23}.

b) Hàm số y=255x xác định ⇔ 25 – 5x ≥ 0 ⇔5x ≤ 25 ⇔5x ≤ 52 ⇔ x ≤ 2

Vậy tập xác định của hàm số y=255xlà D = (–∞; 2].

c) Hàm số y=x1lnx xác định Bài 17 trang 57 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vậy tập xác định của hàm số y=x1lnxlà D = (0; +∞) \ {e}.

d) Hàm số y=1log3x xác định Bài 17 trang 57 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Bài 17 trang 57 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Vậy tập xác định của hàm số y=1log3xlà D = (0; 3].

Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:

Giải Toán 11 trang 56 Tập 2

Giải Toán 11 trang 57 Tập 2

Giải Toán 11 trang 58 Tập 2

1 247 14/11/2023


Xem thêm các chương trình khác: