Giải Toán 11 trang 106 Tập 2 Cánh diều
Với giải bài tập Toán 11 trang 106 Tập 2 trong Bài 5: Khoảng cách sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 106 Tập 2.
Giải Toán 11 trang 106 Tập 2
Lời giải:
Gọi I là trung điểm của BC.
Xét ∆ABC đều có: AI là đường trung tuyến (do I là trung điểm của BC).
Suy ra AI ⊥ BC.
Do SA ⊥ (ABC) và AI ⊂ (ABC) nên SA ⊥ AI.
Ta có: AI ⊥ SA và AI ⊥ BC.
Suy ra đoạn thẳng AI là đoạn vuông góc chung của hai đường thẳng SA và BC.
Từ đó ta có d(SA, BC) = AI.
Xét ∆ABC đều cạnh a, có I là trung điểm của BC nên
Áp dụng định lí Pythagore vào tam giác ABI vuông tại I (do AI ⊥ BC) có:
AB2 = AI2 + BI2
Suy ra
Vậy
Bài tập
Lời giải:
Do hai mặt phẳng (P) và (Q) song song với nhau nên khoảng cách giữa (P) và (Q) bằng chiều cao của cột gỗ.
Vậy khoảng cách giữa (P) và (Q) bằng 4,2 m.
a) Tính khoảng cách từ điểm C đến đường thẳng AB.
b) Tính khoảng cách từ điểm D đến mặt phẳng (ABC).
c) Tính khoảng cách giữa hai đường thẳng AB và CD.
Lời giải:
a) Vì nên CB ⊥ AB.
Suy ra d(C, AB) = CB = b.
Vậy khoảng cách từ điểm C đến đường thẳng AB bằng b.
b) Vì nên AB ⊥ BD.
Ta có: AB ⊥ CB, AB ⊥ BD và CB ∩ BD = B trong (BCD).
Suy ra AB ⊥ (BCD).
Mà CD ⊂ (BCD) nên AB ⊥ CD.
Vì nên CD ⊥ BC.
Ta có: CD ⊥ AB, CD ⊥ BC và AB ∩ BC = B trong (ABC).
Suy ra CD ⊥ (ABC).
Khi đó d(D, (ABC)) = CD.
Áp dụng định lí Pythagore vào tam giác BCD vuông tại C có:
BD2 = BC2 + CD2
Suy ra
Do đó
Vậy khoảng cách từ điểm D đến mặt phẳng (ABC) bằng
c) Ta có: BC ⊥ AB (theo câu a) và BC ⊥ CD (theo câu b).
Suy ra đoạn thẳng BC là đoạn vuông góc chung của hai đường thẳng AB và CD.
Do đó d(AB, CD) = BC = b.
Vậy khoảng cách giữa hai đường thẳng AB và CD bằng b.
Bài 3 trang 106 Toán 11 Tập 2: Với giả thiết ở Bài tập 2, hãy:
a) Chứng minh rằng MN // BC. Tính khoảng cách giữa hai đường thẳng MN và BC.
b) Chứng minh rằng MP // (BCD). Tính khoảng cách từ đường thẳng MP đến mặt phẳng (BCD).
c) Chứng minh rằng (MNP) // (BCD). Tính khoảng cách giữa hai mặt phẳng (MNP) và (BCD).
Lời giải:
a) Xét ∆ABC có: M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của ∆ABC.
Do đó MN // BC.
Do đó d(MN, BC) = d(M, BC).
Mà AB ⊥ BC (theo câu a Bài tập 2) nên MB ⊥ BC, do đó d(M, BC) = MB.
Khi đó, (do M là trung điểm của AB).
Vậy khoảng cách giữa hai đường thẳng MN và BC bằng
d) Xét ∆ABD có: M, P lần lượt là trung điểm của AB và AD nên MP là đường trung bình của ∆ABD.
Do đó MP // BD.
Mà BD ⊂ (BCD) nên MP // (BCD).
Suy ra d(MP, (BCD)) = d(M, (BCD)).
Ta có: AB ⊥ (BCD) (theo câu b Bài tập 2) mà M ∈ AB nên MB ⊥ (ABC).
Suy ra
Nên
Vậy khoảng cách từ đường thẳng MP đến mặt phẳng (BCD) bằng
c) Do MN // BC và BC ⊂ (BCD) nên MN // (BCD).
Ta có: MN // (BCD), MP // (BCD) và MN ∩ MP = M trong (MNP).
Suy ra (MNP) // (BCD).
Do đó
Vậy khoảng cách giữa hai mặt phẳng (MNP) và (BCD) bằng
a) Tính khoảng cách từ điểm S đến đường thẳng CD.
b) Tính khoảng cách từ điểm D đến mặt phẳng (SAB).
c) Tính khoảng cách từ điểm A đến mặt phẳng (SCD).
Lời giải:
a) Do SA ⊥ (ABCD) và CD ⊂ (ABCD) nên SA ⊥ CD.
Vì ABCD là hình vuông nên CD ⊥ AD.
Ta có: CD ⊥ SA, CD ⊥ AD và SA ∩ AD = A trong (SAD).
Suy ra CD ⊥ (SAD).
Mà SD ⊂ (SAD) nên CD ⊥ SD.
Suy ra d(S, CD) = SD.
Do SA ⊥ (ABCD) và AD ⊂ (ABCD) nên SA ⊥ AD.
Áp dụng định lí Pythagore vào tam giác SAD vuông tại A (do SA ⊥ AD) có:
SD2 = SA2 + AD2 = a2 + a2 = 2a2.
Suy ra
Do đó
Vậy khoảng cách từ điểm S đến đường thẳng CD bằng
b) Vì ABCD là hình vuông nên AD ⊥ AB.
Ta có: AD ⊥ SA (theo câu a), AD ⊥ AB và SA ∩ AB = A trong (SAB).
Suy ra AD ⊥ (SAB).
Khi đó d(D, (SAB)) = AD = a.
Vậy khoảng cách từ điểm D đến mặt phẳng (SAB) bằng a.
c) Kẻ AH ⊥ SD (H ∈ SD).
Do CD ⊥ (SAD) (theo câu a) và AH ⊂ (SAD) nên CD ⊥ AH.
Ta có: AH ⊥ CD, AH ⊥ SD và CD ∩ SD = D trong (SCD).
Suy ra AH ⊥ (SCD).
Khi đó d(A, (SCD)) = AH.
Áp dụng hệ thức lượng trong tam giác SAD vuông tại A, đường cao AH có:
Suy ra
Do đó
Vậy khoảng cách từ điểm A đến mặt phẳng (SCD) bằng
Bài 5 trang 106 Toán 11 Tập 2: Với giả thiết ở Bài tập 4, hãy:
a) Chứng minh rằng BC // (SAD) và tính khoảng cách giữa BC và mặt phẳng (SAD).
b) Chứng minh rằng BD ⊥ (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.
Lời giải:
a) Do ABCD là hình vuông nên BC // AD.
Mà AD ⊂ (SAD) nên BC // (SAD).
Khi đó, d(BC, (SAD)) = d(C, (SAD)) = CD = a.
(vì theo câu a, CD ⊥ (SAD))
Vậy khoảng cách giữa BC và mặt phẳng (SAD) bằng a.
b) Vì ABCD là hình vuông nên BD ⊥ AC.
Do SA ⊥ (ABCD) và BD ⊂ (ABCD) nên SA ⊥ BD.
Ta có: BD ⊥ SA, BD ⊥ AC và SA ∩ AC = A trong (SAC).
Suy ra BD ⊥ (SAC).
Gọi O = AC ∩ BD, kẻ OK ⊥ SC (K ∈ SC).
Do BD ⊥ (SAC) và OK ⊂ (SAC) nên BD ⊥ OK.
Ta có: OK ⊥ SC và OK ⊥ BD.
Từ đó ta có đoạn thẳng OK là đoạn vuông góc chung của hai đường thẳng BD và SC nên d(BD, SC) = OK.
Do ABCD là hình vuông nên do đó tam giác ABC vuông tại B.
Áp dụng định lí Pythagore trong tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = a2 + a2 = 2a2.
Suy ra
Do O = AC ∩ BD và AC, BD là hai đường chéo của hình vuông ABCD.
Suy ra O là trung điểm của AC nên
Do SA ⊥ (ABCD) và AC ⊂ (ABCD) nên SA ⊥ AC.
Áp dụng định lí Pythagore trong tam giác SAC vuông tại A (do SA ⊥ AC) có:
SC2 = SA2 + AC2.
Do đó
Xét ∆SAC và ∆OKC có:
là góc chung
Do đó ∆SAC ᔕ ∆OKC (g.g).
Suy ra (tỉ số đồng dạng)
Nên
Khi đó
Vậy khoảng cách giữa hai đường thẳng BD và SC
Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:
Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:
Bài 3 trang 106 Toán 11 Tập 2: Với giả thiết ở Bài tập 2, hãy: a) Chứng minh rằng MN // BC. Tính khoảng cách giữa hai đường thẳng MN và BC...
Bài 5 trang 106 Toán 11 Tập 2: Với giả thiết ở Bài tập 4, hãy: a) Chứng minh rằng BC // (SAD) và tính khoảng cách giữa BC và mặt phẳng (SAD)...
Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:
Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Bài 4: Hai mặt phẳng vuông góc
Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều