Luyện tập 3 trang 103 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Lời giải Luyện tập 3 trang 103 Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 172 27/12/2023


Giải Toán 11 Bài 5: Khoảng cách

Luyện tập 3 trang 103 Toán 11 Tập 2: Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC)).

Lời giải:

Luyện tập 3 trang 103 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Xét ∆SAB có: M, N lần lượt là trung điểm của SA và SB nên MN là đường trung bình của ∆SAB. Do đó MN // AB.

Hơn nữa AB ⊂ (ABC) nên MN // (ABC).

Suy ra d(MN, (ABC)) = d(M, (ABC)).

Gọi H là hình chiếu vuông góc của S trên (ABC) hay SH ⊥ (ABC).

Trong (SAH) kẻ MK // SH (K ∈ AH).

Mà SH ⊥ (ABC) suy ra MK ⊥ (ABC).

Khi đó, d(M, (ABC)) = MK.

Vì SH ⊥ (ABC) nên HA là hình chiếu của SA trên (ABC).

Suy ra góc góc giữa đường thẳng SA và mặt phẳng (ABC) bằng SAH^=60°.

Ta có: SH ⊥ (ABC) và AH ⊂ (ABC) nên SH ⊥ AH.

Xét tam giác SAH vuông tại H (do SH ⊥ AH) có:

sinSAH^=SHSA,suy ra SH=SA.sinSAH^=a.sin60°=a32.

⦁ M là trung điểm của SA và MK // SH nên K là trung điểm của AH, do đó MK là đường trung bình của ∆SAH.

Suy ra MK=12SH=12.a32=a34.

Vậy dMN,ABC=dM,ABC=MK=a34.

1 172 27/12/2023


Xem thêm các chương trình khác: