Giải Toán 10 trang 72 Tập 2 Cánh diều
Với giải bài tập Toán lớp 10 trang 72 Tập 2 trong Bài 2: Biểu thức tọa độ của các phép toán vectơ sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 72 Tập 2.
Giải Toán 10 trang 72 Tập 2
Bài 1 trang 72 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho , , .
b) Tìm tọa độ của vectơ sao cho .
Lời giải
a) Ta có: , .
Khi đó
.
Vậy .
b) Ta có:
Có .
Do đó:
.
Vậy .
Bài 2 trang 72 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).
a) Chứng minh ba điểm A, B, C không thẳng hàng.
b) Tìm tọa độ trọng tâm G của tam giác ABC.
c) Giải tam giác ABC (làm tròn các kết quả đến hàng đơn vị).
Lời giải
a) Ta có: , do đó .
, do đó .
Vì nên .
Do đó, ba điểm A, B, C không thẳng hàng.
b) G là trọng tâm tam giác ABC nên tọa độ điểm G là
,
.
Vậy trọng tâm G có tọa độ là .
c) Ta có: , do đó .
.
.
.
Ta có: .
Suy ra .
Áp dụng hệ quả của định lí côsin trong tam giác ABC, ta có:
cosB = .
Suy ra .
Theo định lí tổng ba góc trong tam giác ABC, ta có:
Suy ra .
Bài 3 trang 72 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).
a) Tìm tọa độ các điểm A, B, C.
b) Trọng tâm hai tam giác ABC và MNP có trùng nhau không? Vì sao?
Lời giải
a) Gọi tọa độ các điểm A(xA; yA), B(xB; yB), C(xC; yC).
M(2; 0) là trung điểm của BC nên (1)
N(4; 2) là trung điểm của cạnh AC nên (2)
P(1; 3) là trung điểm của cạnh AB nên (3)
Từ (2) và (3) suy ra: (4)
Từ (1) và (4) suy ra: .
Do đó tọa độ điểm C là (5; – 1).
Thay tọa độ điểm C vào (2) ta được: .
Do đó A(3; 5).
Thay tọa độ điểm C vào (1) ta được: .
Do đó B(– 1; 1).
Vậy tọa độ các điểm A, B, C là A(3; 5), B(– 1; 1), C(5; – 1).
b) Gọi G là trọng tâm của tam giác ABC, ta có tọa độ của G là
Do đó (1).
Gọi G' là trọng tâm của tam giác MNP, ta có tọa độ của G' là
Do đó (2).
Từ (1) và (2) suy ra G ≡ G'.
Vậy trọng tâm hai tam giác ABC và MNP trùng nhau.
Bài 4 trang 72 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2; 4); B(– 1; 1); C(– 8; 2).
a) Tính số đo góc ABC (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
b) Tính chu vi của tam giác ABC.
Lời giải
a) Ta có: , do đó .
Suy ra .
, do đó .
Suy ra .
Ta có: .
Do đó, .
b) Ta có: , do đó .
Suy ra .
Chu vi của tam giác ABC là:
BA + BC + AC = = .
c) Theo câu a ta có , do đó tam giác ABC là tam giác tù.
Dựng đường cao AH của tam giác ABC.
Do đó diện tích tam giác ABC là SABC = AH . BC. (1)
Vì M thuộc đường thẳng BC nên AH cũng là đường cao của tam giác ABM.
Do đó diện tích tam giác ABM là SABM = AH . BM. (2)
Vì diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM nên SABC = 2SABM. (3)
Từ (1), (2) và (3) suy ra AH . BC = 2 . AH . BM
⇔ BC = 2BM hay BM = BC.
Mà M thuộc đường thẳng BC.
Do đó M là trung điểm của BC hoặc M là điểm đối xứng với trung điểm của BC qua B.
Trường hợp 1: M là trung điểm của BC nên tọa độ của M là
Vậy .
Trường hợp 2: M là điểm đối xứng với trung điểm của BC qua B.
Suy ra điểm cần tìm là M', với B là trung điểm của MM' (M ở trường hợp 1).
Gọi tọa độ M'(xM'; yM').
Vì B là trung điểm của MM' nên
Suy ra .
Vậy .
Do đó có hai điểm M thỏa mãn yêu cầu bài toán.
Bài 5 trang 72 Toán 10 Tập 2: Cho ba điểm A(1; 1) ; B(4; 3) và C(6; – 2).
a) Chứng minh ba điểm A, B, C không thẳng hàng.
b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.
Lời giải
a) Ta có: , do đó .
, do đó .
Vì nên .
Vậy ba điểm A, B, C không thẳng hàng.
b) Gọi tọa độ điểm D là (xD; yD).
Ta có: .
Do ABCD là hình thang có AB // CD nên hai vectơ cùng hướng và CD = 2AB nên suy ra .
Mà .
Khi đó .
Vậy tọa độ điểm D là (0; – 6).
Bài 6 trang 72 Toán 10 Tập 2: Chứng minh khẳng định sau:
Hai vectơ cùng phương khi và chỉ khi có một số thực k sao cho x1 = kx2 và y1 = ky2.
Lời giải
Hai vectơ và cùng phương khi và chỉ khi có số thực k sao cho .
Mà , suy ra .
Do đó .
Vậy hai vectơ cùng phương khi và chỉ khi có một số thực k sao cho x1 = kx2 và y1 = ky2.
Bài 7 trang 72 Toán 10 Tập 2: Một vật đồng thời bị ba lực tác động: lực tác động thứ nhất có độ lớn là 1 500 N, lực tác động thứ hai có độ lớn là 600 N, lực tác động thứ ba có độ lớn là 800 N. Các lực này được biểu diễn bằng những vectơ như Hình 23, với và . Tính độ lớn lực tổng hợp tác động lên vật (làm tròn kết quả đến hàng đơn vị).
Lời giải
Dựng các hình bình hành như hình vẽ sau:
Theo quy tắc hình bình hành ta có: .
Lực tổng hợp tác động lên vật là với .
Ta có:
.
Áp dụng hệ quả của định lí côsin ta có:
Suy ra .
Mặt khác
Suy ra .
Ta lại có:
.
Vậy lực tổng hợp tác động lên vật có độ lớn là 2 598 N.
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 3: Phương trình đường thẳng
Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều