Giải Toán 10 (Cánh diều) Bài tập cuối chương 4 trang 99, 100

Với giải bài tập Toán lớp 10 Bài tập cuối chương 4 trang 99, 100 sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10.

1 3,478 26/09/2024
Tải về


Giải bài tập Toán 10 Bài tập cuối chương 4 trang 99, 100

Giải Toán 10 trang 99 Tập 1

Bài 1 trang 99 Toán lớp 10 Tập 1: Cho tam giác ABC có AB = 3, AC = 4, BAC^=120°. Tính (làm tròn kết quả đến hàng đơn vị):

a) Độ dài cạnh BC và độ lớn góc B;

b) Bán kính đường tròn ngoại tiếp;

c) Diện tích của tam giác;

d) Độ dài đường cao xuất phát từ A;

e) AB.AC,AM.BC với M là trung điểm của BC.

Lời giải:

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

a) Áp dụng định lí côsin vào tam giác ABC có:

BC2 = AB2 + AC2 - 2.AB.AC.cos A^

BC2 = 32 + 42 - 2.3.4. cos 120o

BC2 = 37

BC ≈ 6

Áp dụng định lí sin vào tam giác ABC có:

BCsinA=ACsinB

sinB=AC.sinABC=4.sin120°6=13

B^ ≈ 35o

b) Áp dụng định lí sin vào tam giác ABC có:

BCsinA=2R

2R = 43

R ≈ 3.

c) Nửa chu vi của tam giác ABC là: 3+4+62 = 6,5.

Diện tích của tam giác ABC là:

6,5.6,53.6,54.6,56 ≈ 5. (đvdt)

Vậy diện tích tam giác ABC là 5 (đvdt).

d) Gọi H là chân đường cao kẻ từ A đến BC.

Khi đó diện tích tam giác ABC là: SABC = 12AH.BC = 12AH.6 = 3AH.

Mà theo ý c) ta có diện tích tam giác ABC là 5

3AH = 5

AH = 53 ≈ 2.

Vậy độ dài đường cao kẻ từ A là 2.

d) Ta có AB.AC=AB.AC.cosAB,AC

= 3 . 4 . cos 120o = -6.

Do M là trung điểm của BC nên AM=12AB+12AC.

Khi đó AM.BC=12AB+12AC.BC

=12AB+12AC.ACAB

=12AB.AC12AB2+12AC212AC.AB

=12AC212AB2

=12.4212.32

=12.4212.32

=724

Vậy AB.AC=-6. AM. BC4

Bài 2 trang 99 Toán lớp 10 Tập 1: Không dùng máy tính cầm tay, hãy tính giá trị của các biểu thức sau:

A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2,

B = tan 20° + cot 20° + tan 110° + cot 110°.

Lời giải:

a) A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2

A = [sin(90o - 70o) + sin 70o]2 + [cos(90o - 70o) + cos(180o - 70o)]

A = (cos 70o + sin 70o)2 + (sin 70o - cos 70o)2

A = cos2 70o + 2.cos 70o.sin 70o + sin2 70o + sin2 70o - 2.cos 70o.sin 70o + cos2 70o

A = 2(cos2 70o + sin2 70o)

A = 2.1

A = 2

Vậy A = 2.

b) B = tan 20° + cot 20° + tan 110° + cot 110°

= tan(90° – 70°) + cot(90° – 70°) + tan(180° – 70°) + cot(180° – 70°)

= cot 70° + tan 70° + (– tan 70°) + (– cot 70°)

= (cot 70° – cot 70°) + (tan 70° – tan 70°)

= 0

Vậy B = 0.

Bài 3 trang 99 Toán lớp 10 Tập 1: Không dùng thước đo góc, làm thế nào để biết số đo góc đó.

Bạn Hoài vẽ góc xOy và đố bạn Đông làm thế nào để có thể biết được số đo góc của góc này khi không có thước đo góc. Bạn Đông làm như sau (Hình 70):

- Chọn các điểm A, B lần lượt thuộc các tia Ox và Oy sao cho OA = OB = 2 cm;

- Đo độ dài đoạn thẳng AB được AB = 3,1 cm.

Từ các dữ kiện trên bạn Đông tính được cosxOy^, từ đó suy ra độ lớn góc xOy.

Em hãy cho biết số đo góc xOy mà bạn Đông tính được bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị).

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Lời giải:

Áp dụng định lí côsin vào tam giác OAB có:

AB2 = OA2 + OB2 - 2.OA.OB.cos O^

cosO^=OA2+OB2AB22.OA.OB

cosO^=22+223,122.2.2

cosO^=161800

O^ ≈ 102o.

Vậy bạn Đông tính được xOy^ bằng 102o.

Bài 4 trang 99 Toán lớp 10 Tập 1: Có hai trạm quan sát A và B ven hồ và một trạm quan sát C ở giữa hồ. Để tính khoảng cách từ A và từ B đến C, người ta làm như sau (Hình 71):

- Đo góc BAC được 60°, đo góc ABC được 45°;

- Đo khoảng cách AB được 1 200 m.

Khoảng cách từ trạm C đến các trạm A và B bằng bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Lời giải:

Ba vị trí A, B, C tạo thành ba đỉnh của tam giác ABC.

Trong tam giác ABC có C^=180°A^B^=180°60°45°=75°.

Áp dụng định lí sin vào tam giác ABC có:

ABsinC=BCsinA=CAsinB

Do đó BC=AB.sinAsinC=1200.sin60°sin75° ≈ 1 076 m;

CA=AB.sinBsinC=1200.sin45°sin75° ≈ 878 m.

Vậy khoảng cách từ trạm C đến trạm A và trạm B lần lượt khoảng 878 m và 1 076 m.

Bài 5 trang 99 Toán lớp 10 Tập 1: Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau).

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đó di chuyển dọc bờ sông đến vị trí B cách A một khoảng d = 50 m và tiếp tục đo được góc nghiêng β = 65° so với bờ bên kia tới vị trí C đã chọn (Hình 72). Hỏi độ rộng của khúc sông chảy qua vị trí người đó đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Lời giải:

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Gọi H là chân đường cao kẻ từ C đến AB.

Khi đó độ rộng của khúc sông là CH.

Ta có CBH^ là góc ngoài tại đỉnh B của tam giác ABC nên CBH^=BAC^+BCA^.

Do đó BCA^=CBH^BAC^=65°35°=30°.

Áp dụng định lí sin vào tam giác ABC có:

ABsinC=BCsinA

BC=AB.sinAsinC=50.sin35°sin30° ≈ 57,4 m.

Tam giác CBH vuông tại B nên:

sinCBH^=CHCB

CH = CB . sin CBH^ = 57,4 . sin 65o

CH ≈ 52 m

Vậy độ rộng của khúc sông khoảng 52 m.

Giải Toán 10 trang 100 Tập 1

Bài 6 trang 100 Toán lớp 10 Tập 1: Để đo khoảng cách giữa hai vị trí M, N ở hai phía ốc đảo, người ta chọn vị trí O bên ngoài ốc đảo sao cho: O không thuộc đường thẳng MN; các khoảng cách OM, ON và góc MON là đo được (Hình 73). Sau khi đo, ta có OM = 200 m, ON = 500 m, MON^=135°.

Khoảng cách giữa hai vị trí M, N là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Lời giải:

Ba vị trí O, M, N tạo thành ba đỉnh của tam giác OMN.

Áp dụng định lí côsin vào tam giác OMN có:

MN2 = OM2 + ON2 - 2.OM.ON.cos O^

MN2 = 2002 + 5002 - 2.200.500.cos 135o

MN2 ≈ 431 421 m

MN ≈ 657 m.

Vậy khoảng cách giữa hai điểm M và N khoảng 657 m.

Bài 7 trang 100 Toán lớp 10 Tập 1: Chứng minh:

a) Nếu ABCD là hình bình hành thì AB+AD+CE=AE với E là điểm bất kì;

b) Nếu I là trung điểm của đoạn thẳng AB thì MA+MB+2IN=2MN với M, N là hai điểm bất kì;

c) Nếu G là trọng tâm của tam giác ABC thì MA+MB+MC3MN=3NG với M, N là hai điểm bất kì.

Lời giải:

a)

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Áp dụng quy tắc hình bình hành ta có AB+AD=AC.

Do đó AB+AD+CE=AC+CE=AE.

Vậy AB+AD+CE=AE.

b)

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Do I là trung điểm của AB nên MA+MB=2MI.

Do đó MA+MB+2IN=2MI+2IN=2MI+IN=2MN.

Vậy MA+MB+2IN=2MN.

c)

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Do G là trọng tâm của tam giác ABC nên MA+MB+MC=3MG.

Do đó MA+MB+MC3MN=3MG3MN=3MGMN=3NG.

Vậy MA+MB+MC3MN=3NG.

Bài 8 trang 100 Toán lớp 10 Tập 1: Cho hình bình hành ABCD có AB = 4, AD = 6, BAD^=60° (Hình 74).

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

a) Biểu thị các vectơ BD,  AC theo AB,  AD.

b) Tính các tích vô hướng AB.AD,  AB.AC,  BD.AC.

c) Tính độ dài các đường chéo BD, AC.

Lời giải:

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

a) Ta có BD=ADAB.

Áp dụng quy tắc hình bình hành ta có AB+AD=AC.

b) Ta có AB.AD=AB.AD.cosAB,AD

= 4 . 6 . cos BAD^ = 24 . cos 60o = 12.

AB.AC=AB.AB+AD=AB2+AB.AD = 42 + 12 = 28.

BD.AC=ADAB.AB+AD=AD.AB+AD2AB2AB.AD

= 62 - 42 = 20.

c) Áp dụng định lí côsin vào tam giác ABD có:

BD2 = AB2 + AD2 - 2.AB.AD.cos BAD^

BD2 = 42 + 62 - 2.4.6.cos 60o

BD2 = 28

BD = 27

Do ABCD là hình bình hành nên BAD^+ADC^=180°.

Do đó ADC^=180°BAD^=180°60°=120°.

Áp dụng định lí côsin vào tam giác ADC có:

CD2 = AD2 + DC2 - 2.AD.DC.cos ADC^

CD2 = 62 + 42 - 2.6.4.cos 120o

CD2 = 76

CD = 219

Vậy BD = 27; CD = 219.

Bài 9 trang 100 Toán lớp 10 Tập 1: Hai lực F1,  F2 cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc F1,  F2=α làm cho vật di chuyển theo hướng từ O đến C (Hình 75). Lập công thức tính cường độ của hợp lực F làm cho vật di chuyển theo hướng từ O đến C (giả sử chỉ có đúng hai lực F1,  F2 làm cho vật di chuyển).

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Lời giải:

Do AOBC là hình bình hành nên AOB^+OBC^=180°.

Do đó OBC^=180°α.

Ta có F1.F2=F1.F2.cosF1,F2=F1.F2.cosα.

Áp dụng định lí côsin vào tam giác OBC có:

OC2 = OB2 + BC2 - 2.OB.OC.cos OBC^

F2=F22+F122.F2.F1.cos180°α

F2=F22+F122.F2.F1.cosα.cos180°α

F=F22+F122.F2.F1.cosα.cos180°α.

Vậy công thức tính cường độ của hợp lực FF=F22+F122.F2.F1.cosα.cos180°α

Lý thuyết Toán 10 Bài tập cuối chương 4 – Cánh diều

1. Giá trị lượng giác của một góc từ 0° đến 180°

1.1 Định nghĩa

Bài tập cuối chương 4 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Với mỗi góc α (0 α 180°) ta xác định một điểm M (x0, y0) trên nửa đường tròn đơn vị sao cho góc xOM^= α. Khi đó ta có định nghĩa:

+) sin của góc α, kí hiệu là sinα, được xác định bởi: sinα = y0;

+) côsin của góc α, kí hiệu là cosα, được xác định bởi: cosα = x0;

+) tang của góc α, kí hiệu là tanα, được xác định bởi: tanα = y0x0(x0 ≠ 0);

+) côtang của góc α, kí hiệu là cotα, được xác định bởi: cotα = x0y0(y0 ≠ 0).

Các số sinα, cosα, tanα, cotα được gọi là các giá trị lượng giác của góc α.

Chú ý:

tanα = sinαcosα(α ≠ 90°);

cotα = cosαsinα(0 < α < 180°).

sin(90° – α) = cosα (0° ≤ α ≤ 90°);

cos(90° – α) = sinα (0° ≤ α ≤ 90°);

tan(90° – α) = cotα (0° ≤ α ≤ 90°);

cot(90° – α) = tanα (0° ≤ α ≤ 90°).

1.2. Tính chất

Bài tập cuối chương 4 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Trên hình bên ta có dây cung NM song song với trục Ox và nếu xOM^ = α thì xON^ = 180o – α. Với 0° ≤ α ≤ 180° thì:

sin(180° – α) = sinα,

cos(180° – α) = – cosα,

tan(180° – α) = – tanα (α ≠ 90°),

cot(180° – α) = – cotα (α ≠ 0°, α ≠ 180°).

1.3. Giá trị lượng giác của các góc đặc biệt

Bài tập cuối chương 4 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Chú ý: Cách sử dụng máy tính cầm tay để tính giá trị lượng giác:

– Ta có thể tìm giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng cách sử dụng các phím: sin, cos, tan trên máy tính cầm tay.

2. Định lí côsin

Cho tam giác ABC có BC = a, CA = b, AB = c. Khi đó:

a2 = b2 + c2 – 2bccosA,

b2 = c2 + a2 – 2cacosB,

c2 = a2 + b2 – 2abcosC.

Lưu ý:

cosA = b2+c2a22bc,

cosB = c2+a2b22ca,

cosC = a2+b2c22ab.

3. Định lí sin

Cho tam giác ABC có BC = a, CA = b, AB = c và bán kính đường tròn ngoại tiếp là R. Khi đó:

asinA=bsinB=csinC=2R

Lưu ý:

a = 2RsinA,

b = 2RsinB,

c = 2RsinC.

4. Tính diện tích tam giác

Công thức tính diện tích tam giác:

Cho tam giác ABC có BC = a, CA = b, AB = c. Khi đó, diện tích S của tam giác ABC là:

S = 12bc.sinA = 12ca.sin = 12ab.sinC

Công thức Heron:

Công thức toán học Heron được sử dụng để tính diện tích của một tam giác theo độ dài ba cạnh như sau:

Cho tam giác ABC có BC = a, CA = b, AB = c, p=a+b+c2. Khi đó, diện tích S của tam giác ABC là:

S=p(pa)(pb)(pc).

Trong đó p là nửa chu vi tam giác ABC.

5. Vectơ

Định nghĩa: Vectơ là một đoạn thẳng có hướng.

Vectơ có điểm đầu A, điểm cuối B được kí hiệu là AB và đọc là “vectơ AB. Để vẽ được vectơ AB ta vẽ đoạn thẳng AB và đánh dấu mũi tên ở đầu nút B.

Bài tập cuối chương 4 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Đối với vectơ AB, ta gọi:

– Đường thẳng d đi qua hai điểm A và B là giá của vectơ AB.

– Độ dài đoạn thẳng AB là độ dài của vectơ AB, kí hiệu là AB.

Vectơ còn được kí hiệu là a, b, x, y khi không cần chỉ rõ điểm đầu và điểm cuối của nó. Độ dài của vectơ a được kí hiệu là a

Ví dụ: Vectơ AB có độ dài là 5, ta có thể viết như sau: AB = 5.

6. Vectơ cùng phương, vectơ cùng hướng

Định nghĩa:

– Hai vectơ cùng phương: Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

– Hai vectơ cùng phương có thể cùng hướng hoặc ngược hướng.

7. Hai vectơ bằng nhau

Hai vectơ AB, CD bằng nhau nếu chúng cùng hướng và cùng độ dài, kí hiệu: AB=CD.

Nhận xét:

– Hai vectơ ab được gọi là bằng nhau nếu chúng cùng hướng và có cùng độ dài, kí hiệu a = b.

– Khi cho trước vectơ a và điểm O, thì ta luôn tìm được một điểm A duy nhất sao cho OA=a.

8. Vectơ–không

Ta biết rằng mỗi vectơ có một điểm đầu và một điểm cuối và hoàn toàn được xác định khi biết điểm đầu và điểm cuối của nó.

Bây giờ với một điểm A bất kì ta quy ước có một vectơ đặc biệt mà điểm đầu và điểm cuối đều là A. Vectơ này được kí hiệu là 0 và được gọi là vectơ – không.

Định nghĩa: Vectơ–không là vectơ có điểm đầu và điểm cuối trùng nhau, kí hiệu là 0

Ta quy ước 0 cùng phương và cùng hướng với mọi vectơ và 0 = 0.

Nhận xét: Hai điểm A, B trùng nhau khi và chỉ khi AB= 0.

9. Tổng của hai vectơ

9.1. Định nghĩa

– Với ba điểm bất kì A, B, C, vectơ AC được gọi là tổng của hai vectơ AB BC, kí hiệu là AC = AB + BC.

Bài tập cuối chương 4 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Phép lấy tổng của hai vectơ còn được gọi là phép cộng vectơ.

9.2. Quy tắc hình bình hành

Bài tập cuối chương 4 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Nếu ABCD là hình bình hành thì AB+AD= AC.

9.3. Tính chất

Với ba vectơ tùy ý a, b, c ta có:

a + b = b + a (tính chất giao hoán) ;

(a + b) + c = a + (b + c) (tính chất kết hợp);

a + 0 = 0 + a = a (tính chất của vectơ–không).

Chú ý: Tổng ba vectơ a + b + c được xác định theo một trong hai cách sau:

(a + b) + c hoặc a + (b + c).

10. Hiệu của hai vectơ

10.1. Hai vectơ đối nhau

Định nghĩa: Vectơ có cùng độ dài và ngược hướng với vectơ a được gọi là vectơ đối của vectơ a, kí hiệu là –a. Hai vectơ a và –a được gọi là hai vectơ đối nhau.

Quy ước: Vectơ đối của vectơ 0 là vectơ 0.

Nhận xét:

+) a + (–a) = (–a) + a = 0

+) Hai vectơ a, b là hai vectơ đối nhau khi và chỉ khi a + b = 0.

+) Với hai điểm A, B, ta có: AB+BA=0.

Lưu ý: Cho hai điểm A, B. Khi đó hai vectơ ABBA là hai vectơ đối nhau, tức là BA=AB.

Chú ý:

– I là trung điểm của đoạn thẳng AB khi và chỉ khi IA+IB=0.

– G là trọng tâm của tam giác ABC khi và chỉ khi GA+GB+GC=0.

10.2. Hiệu của hai vectơ

Hiệu của hai vectơ ab, kí hiệu là ab, là tổng của vectơ avà vectơ đối của vectơ b, tức là ab = a + (–b).

Phép lấy hiệu của hai vectơ được gọi là phép trừ hai vectơ.

Nhận xét: Với ba điểm bất kì A, B, O ta có: AB = OBOA.

11. Tích của vectơ với một số

Cho một số k ≠ 0 và vectơ a0. Tích của một số k với vectơ a là một vectơ, kí hiệu là ka, được xác định như sau:

+ cùng hướng với a nếu k > 0, ngược hướng với a nếu k < 0;

+ có độ dài bằng k.a

Quy ước: 0a = 0, k0 = 0

Phép lấy tích của một số với một vectơ gọi là phép nhân một số với một vectơ.

Tính chất

Với hai vectơ bất kì a, b và hai số thực h, k, ta có:

+) k(a + b) = ka + kb; k(a b) = ka – kb;

+) (h + k)a = ha + ka;

+) h(ka) = (hk)a;

+) 1a = a; (–1)a = –a.

Nhận xét: ka = 0 khi và chỉ khi k = 0 hoặc a = 0.

Nếu I là trung điểm của đoạn thẳng AB thì MA+MB=2MI với điểm M bất kì.

Nếu G là trọng tâm của tam giác ABC thì MA+MB+MC=3MG với điểm M bất kì.

– Điều kiện cần và đủ để hai vectơ ab (b ≠ 0) cùng phương là có một số thực k để a = kb.

– Điều kiện cần và đủ để ba điểm phân biệt A, B, C thẳng hàng là có số thực k để AB=kAC.

Nhận xét: Trong mặt phẳng, cho hai vectơ ab không cùng phương. Với mỗi vectơ c có duy nhất cặp số (x; y) thoả mãn c=xa+yb.

12. Tích vô hướng của hai vectơ

12.1. Tích vô hướng của hai vectơ có chung điểm đầu

– Góc giữa hai vectơ OA, OB là góc giữa hai tia OA, OB và được kí hiệu là OA,OB

– Tích vô hướng của hai vectơ OA OB là một số thực, kí hiệu là OA.OB, được xác định bởi công thức: OA.OB=OA.OB.cosOA,OB.

12.2. Tích vô hướng của hai vectơ tùy ý

Định nghĩa:

Cho hai vectơ a, b khác 0. Lấy một điểm O và vẽ vectơ OA=a,OB=b (Hình vẽ).

Bài tập cuối chương 4 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

+ Góc giữa hai vectơ a, b, kí hiệu a,b, là góc giữa hai vectơ OA, OB.

+ Tích vô hướng của hai vectơ ab, kí hiệu a.b là tích vô hướng của hai vectơ OAOB. Như vậy, tích vô hướng của hai vectơ ab là một số thực được xác định bởi công thức: a.b = a.b.cosa,b.

Quy ước: Tích vô hướng của một vectơ bất kì với vectơ 0 là số 0.

Chú ý:

+) a,b = b,a

+) Nếu a,b = 90° thì ta nói hai vectơ a, b vuông góc với nhau, kí hiệu a b hoặc a b. Khi đó a.b = a.b.cos90°= 0.

+) Tích vô hướng của hai vectơ cùng hướng bằng tích hai độ dài của chúng.

+) Tích vô hướng của hai vectơ ngược hướng bằng số đối của tích hai độ dài của chúng.

12.3. Tính chất

Với hai vectơ bất kì a, b và số thực k tùy ý, ta có:

+) a.b = b.a (tính chất giao hoán);

+) a.b+c=a.b+a.c (tính chất phân phối);

+) kab=ka.b=a.kb;

+) a2 ≥ 0, a2 = 0 a = 0.

Trong đó, kí hiệu a.a = a2 và biểu thức này được gọi là bình phương vô hướng của vectơ a.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Chủ đề 1: Đo góc

Bài 1: Mệnh đề toán học

Bài 2: Tập hợp. Các phép toán trên tập hợp

Bài tập cuối chương 1

Bài 1: Bất phương trình bậc nhất hai ẩn

Xem thêm tài liệu Toán lớp 10 Cánh diều hay, chi tiết khác:

Lý thuyết Bài tập cuối chương 4

1 3,478 26/09/2024
Tải về


Xem thêm các chương trình khác: