Giải Toán 10 (Cánh diều) Bài tập cuối chương 4 trang 99, 100
Với giải bài tập Toán lớp 10 Bài tập cuối chương 4 trang 99, 100 sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10.
Giải bài tập Toán 10 Bài tập cuối chương 4 trang 99, 100
a) Độ dài cạnh BC và độ lớn góc B;
b) Bán kính đường tròn ngoại tiếp;
d) Độ dài đường cao xuất phát từ A;
e) với M là trung điểm của BC.
Lời giải:
a) Áp dụng định lí côsin vào tam giác ABC có:
BC2 = AB2 + AC2 - 2.AB.AC.cos
BC2 = 32 + 42 - 2.3.4. cos 120o
BC2 = 37
BC ≈ 6
Áp dụng định lí sin vào tam giác ABC có:
≈ 35o
b) Áp dụng định lí sin vào tam giác ABC có:
2R =
R ≈ 3.
c) Nửa chu vi của tam giác ABC là: = 6,5.
Diện tích của tam giác ABC là:
≈ 5. (đvdt)
Vậy diện tích tam giác ABC là 5 (đvdt).
d) Gọi H là chân đường cao kẻ từ A đến BC.
Khi đó diện tích tam giác ABC là: SABC = AH.BC = AH.6 = 3AH.
Mà theo ý c) ta có diện tích tam giác ABC là 5
3AH = 5
AH = ≈ 2.
Vậy độ dài đường cao kẻ từ A là 2.
d) Ta có
= 3 . 4 . cos 120o = -6.
Do M là trung điểm của BC nên .
Khi đó
Vậy
A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2,
B = tan 20° + cot 20° + tan 110° + cot 110°.
Lời giải:
a) A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2
A = [sin(90o - 70o) + sin 70o]2 + [cos(90o - 70o) + cos(180o - 70o)]
A = (cos 70o + sin 70o)2 + (sin 70o - cos 70o)2
A = cos2 70o + 2.cos 70o.sin 70o + sin2 70o + sin2 70o - 2.cos 70o.sin 70o + cos2 70o
A = 2(cos2 70o + sin2 70o)
A = 2.1
A = 2
Vậy A = 2.
b) B = tan 20° + cot 20° + tan 110° + cot 110°
= tan(90° – 70°) + cot(90° – 70°) + tan(180° – 70°) + cot(180° – 70°)
= cot 70° + tan 70° + (– tan 70°) + (– cot 70°)
= (cot 70° – cot 70°) + (tan 70° – tan 70°)
= 0
Vậy B = 0.
Bài 3 trang 99 Toán lớp 10 Tập 1: Không dùng thước đo góc, làm thế nào để biết số đo góc đó.
- Chọn các điểm A, B lần lượt thuộc các tia Ox và Oy sao cho OA = OB = 2 cm;
- Đo độ dài đoạn thẳng AB được AB = 3,1 cm.
Từ các dữ kiện trên bạn Đông tính được cos, từ đó suy ra độ lớn góc xOy.
Lời giải:
Áp dụng định lí côsin vào tam giác OAB có:
AB2 = OA2 + OB2 - 2.OA.OB.cos
≈ 102o.
Vậy bạn Đông tính được bằng 102o.
- Đo góc BAC được 60°, đo góc ABC được 45°;
- Đo khoảng cách AB được 1 200 m.
Khoảng cách từ trạm C đến các trạm A và B bằng bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?
Lời giải:
Ba vị trí A, B, C tạo thành ba đỉnh của tam giác ABC.
Trong tam giác ABC có .
Áp dụng định lí sin vào tam giác ABC có:
Do đó ≈ 1 076 m;
≈ 878 m.
Vậy khoảng cách từ trạm C đến trạm A và trạm B lần lượt khoảng 878 m và 1 076 m.
Lời giải:
Gọi H là chân đường cao kẻ từ C đến AB.
Khi đó độ rộng của khúc sông là CH.
Ta có là góc ngoài tại đỉnh B của tam giác ABC nên .
Do đó .
Áp dụng định lí sin vào tam giác ABC có:
≈ 57,4 m.
Tam giác CBH vuông tại B nên:
CH = CB . sin = 57,4 . sin 65o
CH ≈ 52 m
Vậy độ rộng của khúc sông khoảng 52 m.
Khoảng cách giữa hai vị trí M, N là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?
Lời giải:
Ba vị trí O, M, N tạo thành ba đỉnh của tam giác OMN.
Áp dụng định lí côsin vào tam giác OMN có:
MN2 = OM2 + ON2 - 2.OM.ON.cos
MN2 = 2002 + 5002 - 2.200.500.cos 135o
MN2 ≈ 431 421 m
MN ≈ 657 m.
Vậy khoảng cách giữa hai điểm M và N khoảng 657 m.
Bài 7 trang 100 Toán lớp 10 Tập 1: Chứng minh:
a) Nếu ABCD là hình bình hành thì với E là điểm bất kì;
b) Nếu I là trung điểm của đoạn thẳng AB thì với M, N là hai điểm bất kì;
c) Nếu G là trọng tâm của tam giác ABC thì với M, N là hai điểm bất kì.
Lời giải:
a)
Áp dụng quy tắc hình bình hành ta có .
Do đó .
Vậy .
b)
Do I là trung điểm của AB nên .
Do đó .
Vậy .
c)
Do G là trọng tâm của tam giác ABC nên .
Do đó .
Vậy .
Bài 8 trang 100 Toán lớp 10 Tập 1: Cho hình bình hành ABCD có AB = 4, AD = 6, (Hình 74).
c) Tính độ dài các đường chéo BD, AC.
Lời giải:
a) Ta có .
Áp dụng quy tắc hình bình hành ta có .
b) Ta có
= 4 . 6 . cos = 24 . cos 60o = 12.
= 42 + 12 = 28.
= 62 - 42 = 20.
c) Áp dụng định lí côsin vào tam giác ABD có:
BD2 = AB2 + AD2 - 2.AB.AD.cos
BD2 = 42 + 62 - 2.4.6.cos 60o
BD2 = 28
BD =
Do ABCD là hình bình hành nên .
Do đó .
Áp dụng định lí côsin vào tam giác ADC có:
CD2 = AD2 + DC2 - 2.AD.DC.cos
CD2 = 62 + 42 - 2.6.4.cos 120o
CD2 = 76
CD =
Vậy BD = ; CD = .
Lời giải:
Do AOBC là hình bình hành nên .
Do đó .
Ta có .
Áp dụng định lí côsin vào tam giác OBC có:
OC2 = OB2 + BC2 - 2.OB.OC.cos
.
Vậy công thức tính cường độ của hợp lực là
Lý thuyết Toán 10 Bài tập cuối chương 4 – Cánh diều
1. Giá trị lượng giác của một góc từ 0° đến 180°
1.1 Định nghĩa
Với mỗi góc α (0 ≤ α ≤ 180°) ta xác định một điểm M (x0, y0) trên nửa đường tròn đơn vị sao cho góc = α. Khi đó ta có định nghĩa:
+) sin của góc α, kí hiệu là sinα, được xác định bởi: sinα = y0;
+) côsin của góc α, kí hiệu là cosα, được xác định bởi: cosα = x0;
+) tang của góc α, kí hiệu là tanα, được xác định bởi: tanα = (x0 ≠ 0);
+) côtang của góc α, kí hiệu là cotα, được xác định bởi: cotα = (y0 ≠ 0).
Các số sinα, cosα, tanα, cotα được gọi là các giá trị lượng giác của góc α.
Chú ý:
tanα = (α ≠ 90°);
cotα = (0 < α < 180°).
sin(90° – α) = cosα (0° ≤ α ≤ 90°);
cos(90° – α) = sinα (0° ≤ α ≤ 90°);
tan(90° – α) = cotα (0° ≤ α ≤ 90°);
cot(90° – α) = tanα (0° ≤ α ≤ 90°).
1.2. Tính chất
Trên hình bên ta có dây cung NM song song với trục Ox và nếu = α thì = 180o – α. Với 0° ≤ α ≤ 180° thì:
sin(180° – α) = sinα,
cos(180° – α) = – cosα,
tan(180° – α) = – tanα (α ≠ 90°),
cot(180° – α) = – cotα (α ≠ 0°, α ≠ 180°).
1.3. Giá trị lượng giác của các góc đặc biệt
Chú ý: Cách sử dụng máy tính cầm tay để tính giá trị lượng giác:
– Ta có thể tìm giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng cách sử dụng các phím: sin, cos, tan trên máy tính cầm tay.
2. Định lí côsin
Cho tam giác ABC có BC = a, CA = b, AB = c. Khi đó:
a2 = b2 + c2 – 2bccosA,
b2 = c2 + a2 – 2cacosB,
c2 = a2 + b2 – 2abcosC.
Lưu ý:
cosA = ,
cosB = ,
cosC = .
3. Định lí sin
Cho tam giác ABC có BC = a, CA = b, AB = c và bán kính đường tròn ngoại tiếp là R. Khi đó:
Lưu ý:
a = 2RsinA,
b = 2RsinB,
c = 2RsinC.
4. Tính diện tích tam giác
Công thức tính diện tích tam giác:
Cho tam giác ABC có BC = a, CA = b, AB = c. Khi đó, diện tích S của tam giác ABC là:
S = bc.sinA = ca.sin = ab.sinC
Công thức Heron:
Công thức toán học Heron được sử dụng để tính diện tích của một tam giác theo độ dài ba cạnh như sau:
Cho tam giác ABC có BC = a, CA = b, AB = c, . Khi đó, diện tích S của tam giác ABC là:
.
Trong đó p là nửa chu vi tam giác ABC.
5. Vectơ
Định nghĩa: Vectơ là một đoạn thẳng có hướng.
Vectơ có điểm đầu A, điểm cuối B được kí hiệu là và đọc là “vectơ AB”. Để vẽ được vectơ ta vẽ đoạn thẳng AB và đánh dấu mũi tên ở đầu nút B.
Đối với vectơ , ta gọi:
– Đường thẳng d đi qua hai điểm A và B là giá của vectơ .
– Độ dài đoạn thẳng AB là độ dài của vectơ , kí hiệu là .
Vectơ còn được kí hiệu là , , , khi không cần chỉ rõ điểm đầu và điểm cuối của nó. Độ dài của vectơ được kí hiệu là
Ví dụ: Vectơ có độ dài là 5, ta có thể viết như sau: = 5.
6. Vectơ cùng phương, vectơ cùng hướng
Định nghĩa:
– Hai vectơ cùng phương: Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.
– Hai vectơ cùng phương có thể cùng hướng hoặc ngược hướng.
7. Hai vectơ bằng nhau
Hai vectơ , bằng nhau nếu chúng cùng hướng và cùng độ dài, kí hiệu:
Nhận xét:
– Hai vectơ và được gọi là bằng nhau nếu chúng cùng hướng và có cùng độ dài, kí hiệu = .
– Khi cho trước vectơ và điểm O, thì ta luôn tìm được một điểm A duy nhất sao cho
8. Vectơ–không
Ta biết rằng mỗi vectơ có một điểm đầu và một điểm cuối và hoàn toàn được xác định khi biết điểm đầu và điểm cuối của nó.
Bây giờ với một điểm A bất kì ta quy ước có một vectơ đặc biệt mà điểm đầu và điểm cuối đều là A. Vectơ này được kí hiệu là và được gọi là vectơ – không.
Định nghĩa: Vectơ–không là vectơ có điểm đầu và điểm cuối trùng nhau, kí hiệu là
Ta quy ước cùng phương và cùng hướng với mọi vectơ và = 0.
Nhận xét: Hai điểm A, B trùng nhau khi và chỉ khi = .
9. Tổng của hai vectơ
9.1. Định nghĩa
– Với ba điểm bất kì A, B, C, vectơ được gọi là tổng của hai vectơ và , kí hiệu là = + .
Phép lấy tổng của hai vectơ còn được gọi là phép cộng vectơ.
9.2. Quy tắc hình bình hành
Nếu ABCD là hình bình hành thì += .
9.3. Tính chất
Với ba vectơ tùy ý , , ta có:
+ = + (tính chất giao hoán) ;
( + ) + = + ( + ) (tính chất kết hợp);
+ = + = (tính chất của vectơ–không).
Chú ý: Tổng ba vectơ + + được xác định theo một trong hai cách sau:
( + ) + hoặc + ( + ).
10. Hiệu của hai vectơ
10.1. Hai vectơ đối nhau
Định nghĩa: Vectơ có cùng độ dài và ngược hướng với vectơ được gọi là vectơ đối của vectơ , kí hiệu là –. Hai vectơ và – được gọi là hai vectơ đối nhau.
Quy ước: Vectơ đối của vectơ là vectơ .
Nhận xét:
+) + (–) = (–) + =
+) Hai vectơ , là hai vectơ đối nhau khi và chỉ khi + = .
+) Với hai điểm A, B, ta có: .
Lưu ý: Cho hai điểm A, B. Khi đó hai vectơ và là hai vectơ đối nhau, tức là
Chú ý:
– I là trung điểm của đoạn thẳng AB khi và chỉ khi .
– G là trọng tâm của tam giác ABC khi và chỉ khi .
10.2. Hiệu của hai vectơ
Hiệu của hai vectơ và , kí hiệu là – , là tổng của vectơ và vectơ đối của vectơ , tức là – = + (–).
Phép lấy hiệu của hai vectơ được gọi là phép trừ hai vectơ.
Nhận xét: Với ba điểm bất kì A, B, O ta có: = .
11. Tích của vectơ với một số
Cho một số k ≠ 0 và vectơ ≠ . Tích của một số k với vectơ là một vectơ, kí hiệu là k, được xác định như sau:
+ cùng hướng với nếu k > 0, ngược hướng với nếu k < 0;
+ có độ dài bằng .
Quy ước: 0 = , k =
Phép lấy tích của một số với một vectơ gọi là phép nhân một số với một vectơ.
Tính chất
Với hai vectơ bất kì , và hai số thực h, k, ta có:
+) k( + ) = k + k; k( – ) = k – k;
+) (h + k) = h + k;
+) h(k) = (hk);
+) 1 = ; (–1) = –.
Nhận xét: k = khi và chỉ khi k = 0 hoặc = .
– Nếu I là trung điểm của đoạn thẳng AB thì với điểm M bất kì.
– Nếu G là trọng tâm của tam giác ABC thì với điểm M bất kì.
– Điều kiện cần và đủ để hai vectơ và ( ≠ 0) cùng phương là có một số thực k để = k.
– Điều kiện cần và đủ để ba điểm phân biệt A, B, C thẳng hàng là có số thực k để .
Nhận xét: Trong mặt phẳng, cho hai vectơ và không cùng phương. Với mỗi vectơ có duy nhất cặp số (x; y) thoả mãn .
12. Tích vô hướng của hai vectơ
12.1. Tích vô hướng của hai vectơ có chung điểm đầu
– Góc giữa hai vectơ , là góc giữa hai tia OA, OB và được kí hiệu là
– Tích vô hướng của hai vectơ và là một số thực, kí hiệu là ., được xác định bởi công thức: .
12.2. Tích vô hướng của hai vectơ tùy ý
Định nghĩa:
Cho hai vectơ , khác Lấy một điểm O và vẽ vectơ (Hình vẽ).
+ Góc giữa hai vectơ , , kí hiệu , là góc giữa hai vectơ , .
+ Tích vô hướng của hai vectơ và , kí hiệu . là tích vô hướng của hai vectơ và . Như vậy, tích vô hướng của hai vectơ và là một số thực được xác định bởi công thức: . = .
Quy ước: Tích vô hướng của một vectơ bất kì với vectơ là số 0.
Chú ý:
+) =
+) Nếu = 90° thì ta nói hai vectơ , vuông góc với nhau, kí hiệu ⊥ hoặc ⊥ . Khi đó . = = 0.
+) Tích vô hướng của hai vectơ cùng hướng bằng tích hai độ dài của chúng.
+) Tích vô hướng của hai vectơ ngược hướng bằng số đối của tích hai độ dài của chúng.
12.3. Tính chất
Với hai vectơ bất kì , và số thực k tùy ý, ta có:
+) . = . (tính chất giao hoán);
+) (tính chất phân phối);
+) ;
+) ≥ 0, = 0 ⟺ = .
Trong đó, kí hiệu . = và biểu thức này được gọi là bình phương vô hướng của vectơ .
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Tập hợp. Các phép toán trên tập hợp
Bài 1: Bất phương trình bậc nhất hai ẩn
Xem thêm tài liệu Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều