Toán 10 Bài 2 (Cánh diều): Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Với giải bài tập Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 2.
Giải bài tập Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Video giải bài tập Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Câu hỏi khởi động
y = – 0,00188(x – 251,5)2 + 118.
Hàm số y = – 0,00188(x – 251,5)2 + 118 có gì đặc biệt?
Lời giải:
Sau bài này ta sẽ trả lời được câu hỏi này như sau:
Hàm số y = – 0,00188(x – 251,5)2 + 118 là hàm số bậc hai và có đồ thị hàm số là một đường cong Parabol.
1. Hàm số bậc hai
Hoạt động 1 trang 39 Toán lớp 10 Tập 1: Cho hàm số y = – 0,00188(x – 251,5)2 + 118
a) Viết công thức xác định hàm số trên về dạng đa thức theo lũy thừa với số mũ giảm dần của x.
b) Bậc của đa thức trên bằng bao nhiêu?
c) Xác định hệ số của x2, hệ số của x và hệ số tự do.
Lời giải:
a) Ta có: y = – 0,00188(x – 251,5)2 + 118
⇔ y = – 0,00188(x2 – 503x + 63252,25) + 118
⇔ y = – 0,00188x2 + 0,94564x – 118,91423 + 118
⇔ y = – 0,00188x2 + 0,94564x – 0,91423
Vậy công thức hàm số được viết về dạng đa thức theo lũy thừa giảm dần của x là
y = – 0,00188x2 + 0,94564x – 0,91423.
b) Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong đa thức.
Đa thức – 0,00188x2 + 0,94564x – 0,91423 có bậc là 2
Vậy bậc đa thức đã cho là 2.
c) Trong đa thức trên, ta có:
+ Hệ số của x2 là: –0,00188
+ Hệ số của x là: 0,94564
+ Hệ số do là: – 0,91423.
Luyện tập 1 trang 39 Toán lớp 10 Tập 1: Cho hai ví dụ về hàm số bậc hai.
Lời giải:
Một số ví dụ về hàm số bậc hai là:
+ Hàm số y = x2 - 5x + 8 là hàm số bậc hai với a = 1 ≠ 0, b = -5 và c = 8
+ Hàm số y = x2 + 15x là hàm số bậc hai với a = , b = 15 và c = 0.
2. Đồ thị hàm số bậc hai
Hoạt động 2 trang 39 Toán lớp 10 Tập 1: Cho hàm số y = x2 + 2x – 3
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
Lời giải:
a) Ta có: y = x2 + 2x – 3
+) Thay x = – 3 vào hàm số đã cho ta được: y = (– 3)2 + 2 . (– 3) – 3 = 0.
+) Thay x = – 2 vào hàm số đã cho ta được: y = (– 2)2 + 2 . (– 2) – 3 = – 3.
+) Thay x = – 1 vào hàm số đã cho ta được: y = (– 1)2 + 2 . (– 1) – 3 = – 4.
+) Thay x = 0 vào hàm số đã cho ta được: y = 02 + 2 . 0 – 3 = – 3.
+) Thay x = 1 vào hàm số đã cho ta được: y = 12 + 2 . 1 – 3 = 0.
Vậy ta hoàn thành bảng như sau:
x |
– 3 |
– 2 |
– 1 |
0 |
1 |
y |
0 |
– 3 |
– 4 |
– 3 |
0 |
b) Ta vẽ các điểm lên mặt phẳng tọa độ như sau:
c) Đường cong cần vẽ có dạng:
d) Tọa độ điểm thấp nhất của parabol trên là (– 1; – 4).
Phương trình trục đối xứng của parabol là: x = – 1.
Đồ thị hàm số đã cho quay bề lõm hướng lên trên.
Hoạt động 3 trang 40 Toán lớp 10 Tập 1: Cho hàm số y = – x2 + 2x + 3.
Lời giải:
a)
Thay x = – 1 vào đồ thị hàm số đã cho ta được: y = – (– 1)2 + 2 . (– 1) + 3 = 0.
Thay x = 0 vào đồ thị hàm số đã cho ta được: y = – 02 + 2 . 0 + 3 = 3.
Thay x = 1 vào đồ thị hàm số đã cho ta được: y = – 12 + 2 . 1 + 3 = 4.
Thay x = 2 vào đố thị hàm số đã cho ta được: y = – 22 + 2 . 2 + 3 = 3.
Thay x = 3 vào đồ thị hàm số đã cho ta được: y = – 32 + 2 . 3 + 3 = 0.
Vậy tọa độ các điểm cần tìm là: A(– 1; 0), B(0; 3), C(1; 4), D(2; 3), E(3; 0) và được vẽ lên mặt phẳng tọa độ như sau:
b) Vẽ đường cong đi qua 5 điểm trên:
c) Tọa độ điểm cao nhất là (1; 4).
Phương trình trục đối xứng của parabol là: x = 1.
Đồ thị hàm số đó quay bề lõm hướng xuống dưới.
Luyện tập 2 trang 41 Toán lớp 10 Tập 1: Vẽ đồ thị mỗi hàm số bậc hai sau:
Lời giải:
a) y = x2 – 4x – 3
Ta có: a = 1, b = – 4, c = – 3, ∆ = (– 4)2 – 4 . 1 . (– 3) = 28.
- Tọa độ đỉnh I = = (2; – 7).
- Trục đối xứng x = = 2.
Ta có bảng sau:
x |
-2 |
0 |
2 |
4 |
6 |
y = x2 – 4x – 3 |
9 |
-3 |
-7 |
-3 |
9 |
- Đồ thị hàm số đi qua các điểm có A(-2; 9), B(0; -3), I(2; -7), D(4; -3) và E(6; 9).
- Vì a > 0 nên bề lõm của đồ thị hướng lên trên.
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = x2 – 4x – 3 như hình dưới.
b) y = x2 + 2x + 1
Ta có: a = 1, b = 2, c = 1, ∆ = 22 – 4 . 1 . 1 = 0.
- Tọa độ đỉnh I = = (-1; 0).
- Trục đối xứng x = = -1.
Ta có bảng sau:
x |
-3 |
-2 |
-1 |
0 |
1 |
y = x2 + 2x + 1 |
4 |
1 |
0 |
1 |
4 |
Đồ thị hàm số đi qua các điểm A(-3; 4), B(-2; 1), I(-1; 0), D(0; 1) và E(1; 4).
- Vì a = 1 > 0 nên bề lõm của đồ thị hướng lên trên.
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = x2 + 2x + 1 như hình dưới.
c) y = – x2 – 2
Ta có: a = – 1, b = 0, c = – 2, ∆ = 02 – 4 . (– 1) . (– 2) = – 8.
- Tọa độ đỉnh I = = (0; -2).
- Trục đối xứng x = .
Ta có bảng sau:
x |
-2 |
-1 |
0 |
1 |
2 |
y = -x2 - 2 |
-6 |
-3 |
-2 |
-3 |
-6 |
Đồ thị hàm số đi qua các điểm A(-2; -6), B(-1; -3), I(0; -2), C(1; -3) và D(2; -6).
- Do a = -1 < 0 nên bề lõm của đồ thị hướng xuống dưới.
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = – x2 – 2 như hình dưới.
Hoạt động 4 trang 41 Toán lớp 10 Tập 1:
Lời giải:
a) Quan sát Hình 11.
+ Trong khoảng (– ∞; – 1) đồ thị hàm số đã cho “đi xuống” nên hàm số nghịch biến trên khoảng (– ∞; – 1).
+ Trong khoảng (– 1; + ∞) đồ thị hàm số đã cho “đi lên” nên hàm số đồng biến trên khoảng (– 1; + ∞).
Khi đó ta có bảng biến thiên sau:
b) Quan sát Hình 12.
+ Trong khoảng (– ∞; 1) đồ thị hàm số đã cho “đi lên” nên hàm số đồng biến trên khoảng (– ∞; 1).
+ Trong khoảng (1; + ∞) đồ thị hàm số trên đi xuống nên hàm số nghịch biến trên khoảng (1; + ∞).
Ta có bảng biến thiên
Luyện tập 3 trang 42 Toán lớp 10 Tập 1: Lập bảng biến thiên của mỗi hàm số sau:
Lời giải:
a) Ta có: a = 1 > 0, b = – 3, c = 4
Khi đó: ∆ = (– 3)2 – 4 . 1 . 4 = – 7,, .
Do đó hàm số đã cho nghịch biến trên khoảng và đồng biến trên khoảng .
Ta có bảng biến thiên:
b) Ta có: a = – 2 < 0, b = 0, c = 5, ∆ = 02 – 4 . (– 2) . 5 = 40 , , .
Do đó hàm số đã cho đồng biến trên khoảng (– ∞; 0) và nghịch biến trên khoảng (0; + ∞).
Ta có bảng biến thiên:
3. Ứng dụng
Lời giải:
Ta có: y = – 0,00188(x – 251,5)2 + 118
⇔ y = – 0,00188x2 + 0,94564x – 0,91423 là hàm số bậc hai với a = -0,00188, b = 0,94564 và c = -0,91423.
Khi đó: ∆ = (0,94564)2 – 4 . (– 0,00188) . (– 0,91423) = 0,88736
Suy ra:
Ta có: a = – 0,00188 < 0 ta có bảng biến thiên sau:
Vậy độ cao lớn nhất cần tìm là 118 m.
Bài tập
Lời giải:
a) y = – 3x2 có dạng y = ax2 + bx + c (a ≠ 0) nên đây là hàm số bậc hai với a = – 3, b = 0 và c = 0.
b) y = 2x(x2 – 6x + 1) ⇔ y = 2x4 – 12x2 + 2x
Bậc của đa thức là 4.
Do đó hàm số này không phải là hàm số bậc hai.
c) y = 4x(2x – 5) ⇔ y = 8x2 – 20x
Hàm số này có dạng y = ax2 + bx + c (a ≠ 0) nên đây là hàm số bậc hai với hệ số a = 8, b = – 20 và c = 0.
Bài 2 trang 43 Toán lớp 10 Tập 1: Xác định parabol y = ax2 + bx + 4 trong mỗi trường hợp sau:
a) Đi qua điểm M(1; 12) và N(– 3; 4);
Lời giải:
a) Thay x = 1, y = 12 vào hàm số ta được:
12 = a.12 + b.1 + 4 ⇔ a + b = 8 ⇔ a = 8 – b
Thay x = – 3, y = 4 vào hàm số ta được:
4 = a.(-3)2 + (-3).b + 4 ⇔ 4 = 9a - 3b + 4 ⇔ 3a – b = 0 (1)
Thế a = 8 - b vào (1) ta có: 3. (8 – b) – b = 0 ⇔ 24 – 4b = 0 ⇔ b = 6.
⇒ a = 8 – b = 8 – 6 = 2.
Vậy parabol cần tìm là y = 2x2 + 6x + 4.
b) Tọa độ đỉnh của Parabol là I(– 3; – 5)
Khi đó, ta có:
Vậy parabol cần tìm là y = x2 + 6x + 4.
Bài 3 trang 43 Toán lớp 10 Tập 1: Vẽ đồ thị của mỗi hàm số sau:
Lời giải:
a) y = 2x2 – 6x + 4
Ta có: a = 2, b = – 6, c = 4, ∆ = (– 6)2 – 4 . 2 . 4 = 4.
- Tọa độ đỉnh .
- Trục đối xứng .
- Ta có bảng sau:
x |
0 |
1 |
|
2 |
3 |
y = 2x2 – 6x + 4 |
4 |
0 |
|
0 |
4 |
Đồ thị hàm số là các đường thẳng đi qua các điểm A(0; 4), B(1; 0), , C(2; 0) và D(3; 4).
- Do a > 0 nên đồ thị có bề lõm hướng lên trên.
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số y = 2x2 – 6x + 4 như hình vẽ dưới.
b) y = – 3x2 – 6x – 3
Ta có: a = – 3, b = – 6, c = – 3, ∆ = (– 6)2 – 4 . (– 3) . (– 3) = 0.
- Tọa độ đỉnh .
- Trục đối xứng .
- Tọa độ đỉnh I(– 1; 0).
- Trục đối xứng x = – 1.
- Ta có bảng sau:
x |
-3 |
-2 |
-1 |
0 |
1 |
y = – 3x2 – 6x – 3 |
-12 |
-3 |
0 |
-3 |
-12 |
Đồ thị hàm số là các đường thẳng đi qua các điểm A(-3; -12), B(-2; -3), I(-1; 0), C(0; -3) và D(1; -12).
- Do a < 0 nên bề lõm của đồ thị hướng xuống.
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số y = – 3x2 – 6x – 3 như hình dưới.
Bài 4 trang 43 Toán lớp 10 Tập 1: Cho đồ thị hàm số bậc hai ở Hình 15.
a) Xác định trục đối xứng, tọa độ đỉnh của đồ thị hàm số.
b) Xác định khoảng đồng biến, khoảng nghịch biến của hàm số.
c) Tìm công thức xác định hàm số.
Lời giải:
a) Quan sát đồ thị hàm số ở Hình 15, ta thấy trục đối xứng của hàm số là đường thẳng x = 2, tọa độ đỉnh I(2; – 1).
b) Quan sát hình vẽ, ta thấy:
- Đồ thị hàm số đi xuống trên khoảng (– ∞; 2) nên hàm số nghịch biến trên (– ∞; 2).
- Đồ thị hàm số đi lên trên khoảng (2; + ∞) nên hàm số đồng biến trên (2; + ∞).
c) Giả sử hàm số cần tìm có dạng: y = ax2 + bx + c (a ≠ 0) (1)
Đồ thị hàm số cắt trục tung tại (0; 3):
Thay x = 0 và y = 3 vào đồ thị hàm số (1), ta được:
3 = a.02 + b.0 + c ⇔ c = 3.
Đồ thị hàm số cắt trục hoành tại 2 điểm (1; 0) và (3; 0)
Thay x = 1 và y = 0 vào đồ thị hàm số (1), ta được:
0 = a.12 + b.1 + c ⇔ a + b + c = 0
Mà c = 3 nên a + b + 3 = 0
Thay x = 3 và y = 0 vào đồ thị hàm số (1), ta được:
0 = a.32 + b.3 + c ⇔ 9a + 3b + c = 0
Mà c = 3 nên 9a + 3b + 3 = 0
Khi đó ta có hệ phương trình:
Vậy công thức xác định của hàm số là: y = x2 – 4x + 3.
Bài 5 trang 43 Toán lớp 10 Tập 1: Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:
Lời giải:
a) y = 5x2 + 4x – 1
Ta có: a = 5 > 0, b = 4, , Δ = 42 – 4.5.(-1) = 16 + 20 = 36,
Khi đó ta có bảng biến thiên sau:
Vậy hàm số đã cho nghịch biến trên khoảng và đồng biến trên khoảng .
b) y = – 2x2 + 8x + 6
Ta có: a = – 2 < 0, b = 8, , Δ = 82 – 4.(-2).6 = 64 + 48 = 112,
Khi đó, ta có bảng biến thiên:
Vậy hàm số đã cho đồng biến trên khoảng (– ∞ ; 2) và nghịch biến trên khoảng (2; + ∞).
Lời giải:
Quan sát đồ thị hàm số, ta thấy:
Cổng Arch có dạng hình parabol nên có dạng: y = ax2 + bx + c (a ≠ 0) (1)
Ta có parabol này đi qua gốc tọa độ O(0; 0), điểm M(10; 43) và điểm có tọa độ (162; 0).
Vì điểm O(0; 0) thuộc đồ thị hàm số nên thay x = 0 và y = 0 vào đồ thị hàm số (1) ta được: 0 = a . 02 + b . 0 + c ⇔ c = 0
Vì điểm M(10; 43) thuộc đồ thị hàm số nên thay x = 10 và y = 43 vào đồ thị hàm số (1) ta được: 43 = a.102 + b.10 + c ⇔ 100a + 10b = 43 (do c = 0)
Vì điểm có tọa độ (162; 0) thuộc đồ thị hàm số nên thay x = 162 và y = 0 vào đồ thị hàm số (1) ta được: 0 = a.1622 + b. 162 + c ⇔ 26 244a + 162b = 0 hay 162a + b = 0
Khi đó ta có hệ phương trình:
Do đó:
Ta có , parabol có bề lõm hướng xuống dưới nên điểm cao nhất chính là điểm đỉnh của parabol và khi đó chiều cao của cổng chính là tung độ đỉnh của parabol.
Ta có:
Tung độ của đỉnh: .
Vậy chiều cao của cổng khoảng 186 m.
Lý thuyết Toán 10 Bài 2. Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng – Cánh diều
1. Hàm số bậc hai
Hàm số bậc hai là hàm số được cho bằng biểu thức có dạng y = , trong đó a, b, c là những hằng số và a ≠ 0. Tập xác định của hàm số là ℝ.
Ví dụ:
– Hàm số y = là hàm số bậc hai có hệ số của x2 bằng 2, hệ số của x bằng 3 và hệ số tự do bằng –2.
– Hàm số y = 2x – 3 không phải là hàm số bậc số do hệ số của x2 ở đây bằng 0.
2. Đồ thị hàm số bậc hai
Đồ thị hàm số bậc hai y = (a ≠ 0) là một đường parabol có đỉnh là điểm với toạ độ và trục đối xứng là đường thẳng .
Chú ý: Cho hàm số f(x) = (a ≠ 0), ta có: = f
Để vẽ đồ thị hàm số y = (a ≠ 0) ta thực hiện các bước:
Bước 1: Xác định toạ độ đỉnh: ;
Bước 2: Vẽ trục đối xứng ;
Bước 3: Xác định một số điểm đặc biệt, chẳng hạn: giao điểm với trục tung (có toạ độ (0; c)) và trục hoành (nếu có), điểm đối xứng với điểm có toạ độ (0; c) qua trục đối xứng
Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số.
Ví dụ: Vẽ đồ thị hàm số bậc hai y =
Hướng dẫn giải
– Tập xác định: D = ℝ
– Ta có: a = 1; b = –2; c = –3; = – 4.1.(–3) = 16
– Toạ độ đỉnh I = =
– Trục đối xứng = 1
– Giao điểm của parabol với trục Oy là A(0; –3)
– Giao điểm của parabol với trục Ox là B (–1; 0); (3; 0)
– Điểm đối xứng với điểm A qua trục đối xứng x = 1 là D (2; –3)
Vẽ parabol qua các điểm trên:
Chú ý:
Cho hàm số f(x) = (a ≠ 0)
– Nếu a > 0 thì hàm số nghịch biến trên khoảng ; đồng biến trên khoảng .
– Nếu a < 0 thì hàm số đồng biến trên khoảng ; nghịch biến trên khoảng .
Bảng biến thiên:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 3: Dấu của tam thức bậc hai
Bài 4: Bất phương trình bậc hai một ẩn
Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Xem thêm tài liệu Toán lớp 10 Cánh diều hay, chi tiết khác:
Lý thuyết Bài 2. Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều