Bài 6 trang 43 Toán lớp 10 Tập 1 | Cánh diều Giải Toán lớp 10

Lời giải Bài 6 trang 43 Toán lớp 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.

1 1,140 11/03/2023


Giải Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 6 trang 43 Toán lớp 10 Tập 1: Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ tọa độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng có vị trí tọa độ (162; 0). Biết một điểm M trên cổng có tọa độ là (10; 43). Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.

Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol

Lời giải:

Quan sát đồ thị hàm số, ta thấy:

Cổng Arch có dạng hình parabol nên có dạng: y = ax2 + bx + c (a ≠ 0) (1)

 Ta có parabol này đi qua gốc tọa độ O(0; 0), điểm M(10; 43) và điểm có tọa độ (162; 0).

Vì điểm O(0; 0) thuộc đồ thị hàm số nên thay x = 0 và y = 0 vào đồ thị hàm số (1) ta được: 0 = a . 02 + b . 0 + c c = 0

Vì điểm M(10; 43) thuộc đồ thị hàm số nên thay x = 10 và y = 43 vào đồ thị hàm số (1) ta được: 43 = a.102 + b.10 + c 100a + 10b = 43 (do c = 0)

Vì điểm có tọa độ (162; 0) thuộc đồ thị hàm số nên thay x = 162 và y = 0 vào đồ thị hàm số (1) ta được: 0 = a.1622 + b. 162 + c 26 244a + 162b = 0 hay 162a + b = 0

Khi đó ta có hệ phương trình: 

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng - Cánh diều (ảnh 1)

a=431520b=3483760

Do đó: y=431520x2+3483760x

Ta có a=431520<0, parabol có bề lõm hướng xuống dưới nên điểm cao nhất chính là điểm đỉnh của parabol và khi đó chiều cao của cổng chính là tung độ đỉnh của parabol.

Ta có: Δ=b24ac=348376020=34837602

Tung độ của đỉnh: Δ4a=34837602:4.431520186.

Vậy chiều cao của cổng khoảng 186 m.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Câu hỏi khởi động trang 39 Toán lớp 10 Tập 1: Cầu cảng Sydney là một trong những hình ảnh biểu tượng của thành phố Sydney...

Hoạt động 1 trang 39 Toán lớp 10 Tập 1: Cho hàm số y = – 0,00188(x – 251,5)2 + 118...

Luyện tập 1 trang 39 Toán lớp 10 Tập 1: Cho hai ví dụ về hàm số bậc hai...

Hoạt động 2 trang 39 Toán lớp 10 Tập 1: Cho hàm số y = x2 + 2x – 3. a) Tìm giá trị y tương ứng...

Hoạt động 3 trang 40 Toán lớp 10 Tập 1: Cho hàm số y = – x2 + 2x + 3. a) Tìm tọa độ 5 điểm thuộc đồ thị...

Luyện tập 2 trang 41 Toán lớp 10 Tập 1: Vẽ đồ thị mỗi hàm số bậc hai sau...

Hoạt động 4 trang 41 Toán lớp 10 Tập 1: a) Quan sát đồ thị hàm số bậc hai y = x+ 2x – 3 trong Hình 11...

Luyện tập 3 trang 42 Toán lớp 10 Tập 1: Lập bảng biến thiên của mỗi hàm số sau...

Luyện tập 4 trang 43 Toán lớp 10 Tập 1: Trong bài toán ở phần mở đầu, độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney...

Bài 1 trang 43 Toán lớp 10 Tập 1: Trong các hàm số sau, hàm số nào là hàm số bậc hai...

Bài 2 trang 43 Toán lớp 10 Tập 1: Xác định parabol y = ax2 + bx + 4 trong mỗi trường hợp sau...

Bài 3 trang 43 Toán lớp 10 Tập 1: Vẽ đồ thị của mỗi hàm số sau: a) y = 2x2 – 6x + 4...

Bài 4 trang 43 Toán lớp 10 Tập 1: Cho đồ thị hàm số bậc hai ở Hình 15...

Bài 5 trang 43 Toán lớp 10 Tập 1: Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau...

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 3: Dấu của tam thức bậc hai

Bài 4: Bất phương trình bậc hai một ẩn

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác

1 1,140 11/03/2023


Xem thêm các chương trình khác: