Giải Toán 10 Bài 1 (Cánh diều): Hàm số và đồ thị
Với giải bài tập Toán lớp 10 Bài 1: Hàm số và đồ thị sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 1.
Giải bài tập Toán 10 Bài 1: Hàm số và đồ thị
Video giải bài tập Toán 10 Bài 1: Hàm số và đồ thị
Câu hỏi khởi động
Lời giải:
Theo công thức rơi tự do được tìm hiểu ở Vật lý 10, ta có:
Công thức tính quãng đường S (m) của vật rơi tự do theo thời gian t (s) là: S = gt2, trong đó g là gia tốc rơi tự do, g ≈ 9,8 m/s2.
Để có được hình hẻnh hình học minh họa về mối liên hệ đó ta cần vẽ đồ thị hàm số S = gt2 trên hệ trục tọa độ.
1. Hàm số
S = gt2, trong đó g là gia tốc rơi tự do, g ≈ 9,8 m/s2.
a) Với mỗi giá trị t = 1, t = 2, tính giá trị tương ứng của S.
b) Với mỗi giá trị của t có bao nhiêu giá trị tương ứng của S?
Lời giải:
Ta có g ≈ 9,8 m/s2 nên S = gt2 =
a) Thay t = 1 vào biểu thức (1) ta có: S = 4,9 . 12 = 4,9 (m).
Thay t = 2 vào biểu thức (1) ta có: S = 4,9 . 22 = 19,6 (m).
Vậy với t = 1s thì S = 4,9 m và t = 2s thì S = 19,6 m.
b) Tương ứng với mỗi giá trị của t ta sẽ tính được một giá trị S.
a) Với mỗi giá trị x = 100, x = 200, tính giá trị tương ứng của y.
b) Với mỗi giá trị của x có bao nhiêu giá trị tương ứng của y?
Lời giải:
a) Thay x = 100 vào công thức đã cho, ta được: y = – 200 . 1002 + 92 000 . 100 – 8 400 000 = – 1 200 000.
Thay x = 200 vào công thức đã cho, ta được: y = – 200 . 2002 + 92 000 . 200 – 8 400 000 = 2 000 000.
Vậy với x = 100 thì y = – 1 200 000 và với x = 200 thì y = 2 000 000.
b) Ta thấy với mỗi giá trị x sẽ tìm được một giá trị y tương ứng.
Lời giải:
c = 4,7t là một hàm số của biến số t vì với mỗi giá trị t (phút) có một và chỉ một giá trị tương ứng của c.
Hoạt động 3 trang 32 Toán lớp 10 Tập 1: Cho hai hàm số y = 2x + 1 (1) và (2).
a) Nêu biểu thức xác định mỗi hàm số trên.
b) Tìm x sao cho mỗi biểu thức trên có nghĩa.
Lời giải:
a) Biểu thức xác định hàm số (1) là 2x + 1.
Biểu thức xác định hàm số (2) là .
b) Biểu thức 2x + 1 có nghĩa với mọi .
Biểu thức có nghĩa khi x – 2 ≥ 0 ⇔ x ≥ 2.
Vậy biểu thức 2x + 1 có nghĩa với mọi và biểu thức có nghĩa khi x ≥ 2.
Luyện tập 2 trang 32 Toán lớp 10 Tập 1: Tìm tập xác định của hàm số:
Lời giải:
Hàm số xác định khi biểu thức có nghĩa khi
⇔.
Suy ra tập xác định của hàm số đã cho là D = {x ≥ – 2, x ≠ 3} hay D = .
Vậy tập xác định của hàm số đã cho là D = {x ≥ – 2, x ≠ 3} = .
Luyện tập 3 trang 33 Toán lớp 10 Tập 1: Cho hàm số:
a) Tìm tập xác định của hàm số trên.
b) Tính giá trị của hàm số khi x = – 1; x = 2 022.
Lời giải:
a) Hàm số đã cho xác định khi x < 0, x > 0 nên tập xác định của hàm số là D = .
Vậy tập xác định của hàm số đã cho là D = .
b) Với x = – 1 < 0 ta thay x = -1 vào hàm số y = -x, ta được: y = – (– 1) = 1.
Với x = 2 022 > 0 ta thay x = 2 022 vào hàm số y = x, ta được: y = x = 2 022.
Vậy giá trị của hàm số đã cho tại x = – 1 là y = 1, tại x = 2 022 là y = 2 022.
Hoạt động 4 trang 34 Toán lớp 10 Tập 1: Xét hàm số y = f(x) = x2.
a) Tính các giá trị y1 = f(x1), y2 = f(x2) tương ứng với giá trị x1 = – 1, x2 = 1.
b) Biểu diễn trong mặt phẳng tọa độ Oxy các điểm M1(x1; y1), M2(x2; y2).
Lời giải:
a) Thay x1 = -1 vào hàm số y = f(x) = x2, ta được:
y1 = f(x1) = f(– 1) = (– 1)2 = 1.
Thay x2 = -1 vào hàm số y = f(x) = x2, ta được:
y2 = f(x2) = f(1) = 12 = 1.
Vậy tương ứng với giá trị x1 = – 1, x2 = 1 thì các giá trị y1 = f(x1) = 1, y2 = f(x2) = 1.
b) Với x1 = - 1 thì y1 = f(x1) = 1 nên điểm: M1(– 1; 1)
Với x1 = 1 thì y1 = f(x1) = 1 nên điểm: M2(1; 1).
Ta hai điểm M1 và M2 biểu diễn lên mặt phẳng tọa độ Oxy như sau:
2. Đồ thị của hàm số
Lời giải:
Hàm số có nghĩa khi x ≠ 0.
+ Điểm M(– 1; – 1)
Thay x = -1 và y = - 1 vào đồ thị hàm số ta được y = (luôn đúng).
Suy ra điểm M thuộc vào đồ thị hàm số đã cho.
+ Điểm N(0; 2)
Điểm N có hoành độ x = 0 mà hàm số có nghĩa khi x ≠ 0 nên điểm N không thuộc vào đồ thị hàm số đã cho.
+ Điểm P(2; 1)
Thay x = 2 và y = 1 vào đồ thị hàm số đã cho ta được: (vô lý)
Suy ra điểm P không thuộc đồ thị hàm số .
Vậy có điểm M thuộc đồ thị hàm số đã cho và điểm N và P là hai điểm không thuộc đồ thị hàm số đã cho.
Luyện tập 5 trang 35 Toán lớp 10 Tập 1: Dựa vào Hình 4, xác định g(– 2), g(0), g(2).
Lời giải:
Ta có: g(– 2) là giá trị của hàm số tại x = – 2,
g(0) là giá trị của hàm số tại x = 0,
g(2) là giá trị của hàm số tại x = 2.
Để xác định g(-2), g(0) và g(2) ta làm như sau:
Tại điểm x = -2 dóng một đường thẳng đứng vuông góc đường thẳng này cắt đồ thị hàm số tại điểm có tọa độ (-2; -1) nên g(-2) = - 1 (như trên hình vẽ).
Tại điểm x = 0 dóng một đường thẳng đứng vuông góc đường thẳng này cắt đồ thị hàm số tại điểm O(0; 0) nên g(0) = 0 (như trên hình vẽ).
Tại điểm x = 2 dóng một đường thẳng đứng vuông góc đường thẳng này cắt đồ thị hàm số tại điểm có tọa độ (2; -1) nên g(2) = -1 (như trên hình vẽ).
Vậy g(– 2) = – 1, g(0) = 0, g(2) = – 1.
3. Sự biến thiên của hàm số
Hoạt động 5 trang 36 Toán lớp 10 Tập 1: Cho hàm số f(x) = x + 1.
b) Chứng minh rằng nếu sao cho x1 < x2 thì f(x1) < f(x2).
Lời giải:
a) Ta có f(1) và f(2) lần lượt là giá trị của hàm số tại điểm x = -1 và x = 2, khi đó:
f(1) = 1 + 1 = 2, f(2) = 2 + 1 = 3.
Vì 2 < 3 nên f(1) < f(2).
Vậy f(1) < f(2).
b) Ta có f(x1) và f(x2) lần lượt là các giá trị của hàm số tại x1 và x2, khi đó f(x1) = x1 + 1, f(x2) = x2 + 1
Vì x1 < x2 nên x1 + 1 < x2 + 1
Do đó: f(x1) < f(x2) với mọi .
Vậy f(x1) < f(x2) với mọi thỏa mãn x1 < x2.
Lời giải:
Với x (– ∞; 0) thì y = 6x2 luôn xác định.
Xét hai số bất kì x1, x2 ∈ (– ∞; 0) sao cho x1 < x2.
Khi đó, ta có: x1 < x2 < 0 nên hay f(x1) > f(x2).
Vậy hàm số nghịch biến trên khoảng (– ∞; 0).
Hoạt động 6 trang 36, 37 Toán lớp 10 Tập 1: Cho đồ thị hàm số: y = f(x) = x2 như Hình 6.
Lời giải:
a) Tại điểm x = -2 trên trục hoành dóng một đường thẳng đứng vuông góc với trục Ox cắt đồ thị tại điểm có tọa độ (-2; 4) nên f(-2) = 4.
Tại điểm x = -1 dóng một đường thẳng vuông góc với trục Ox cắt đồ thị tại điểm có tọa độ (-1; 1) nên f(-1) = 1.
Vì 4 > 1 nên f(– 2) > f(– 1).
Nhận xét về sự biến thiên của giá trị hàm số:
Khi giá trị biến x tăng dần từ – 2 đến – 1 thì giá trị của hàm số giảm dần từ 4 xuống 1.
b) Tại điểm x = 1 trên trục hoành dóng một đường thẳng đứng vuông góc với trục Ox cắt đồ thị tại điểm có tọa độ (1; 1) nên f(1) = 1.
Tại điểm x = 2 dóng một đường thẳng vuông góc với trục Ox cắt đồ thị tại điểm có tọa độ (2; 4) nên f(2) = 4.
Vì 1 < 4 nên f(1) < f(2).
Nhận xét về sự biến thiên của giá trị hàm số:
Khi giá trị biến x tăng dần từ 1 đến 2 thì giá trị của hàm số tăng dần từ 1 lên 4.
Bài tập
Bài 1 trang 37 Toán lớp 10 Tập 1: Tìm tập xác định của mỗi hàm số sau:
Lời giải:
a) Hàm số y = – x2 xác định với mọi .
Do đó tập xác định D = .
Vậy tập xác định của hàm số là D = .
b) Biểu thức có nghĩa khi 2 – 3x ≥ 0 .
Do đó tập xác định D = {x | } = .
Vậy tập xác định của hàm số là D = .
c) Biểu thức xác định khi x + 1 ≠ 0 ⇔ x ≠ – 1.
Suy ra tập xác định của hàm số là D = {x| x ≠ – 1} = .
Vậy tập xác định của hàm số là D = .
d)
Ta có:
Hàm số bằng 1 nếu
Hàm số bằng 0 nếu
Do đó hàm có nghĩa khi hoặc hay .
Vậy tập xác định của hàm số là D = .
a) Nêu chỉ số PM2,5 trong tháng 2; tháng 5; tháng 10.
b) Chỉ số PM2,5 có phải là hàm số của tháng không? Tại sao?
c) Bụi mịn PM2,5 có đường kính nhỏ hơn 2,5 μm (mi-crô-mét) dễ dàng xâm nhập vào cơ thể con người thông qua đường hô hấp và gây nên một số bệnh nguy hiểm như đột quỵ, tim mạch,.. Em hãy nêu một số biện pháp bảo vệ bản thân trước bụi mịn.
Lời giải:
a) Quan sát bảng ta thấy chỉ số PM2,5 trong tháng 2 là 36,0 μg/m3; trong tháng 5 là 45,8 μg/m3; trong tháng 10 là 43,2 μg/m3.
b) Chỉ số PM2,5 là hàm số của tháng vì mỗi tháng chỉ tương ứng với đúng một giá trị của chỉ số PM2,5.
c) Một số biện pháp bảo vệ bản thân trước bụi mịn:
- Dọn dẹp vệ sinh nơi ở, nếu có điều kiện nên sử dụng máy lọc không khí trong nhà.
- Sử dụng khẩu trang thích hợp khi đi ra ngoài.
- Tạo ra thoái quen sinh hoạt tốt cho sức khỏe: Vệ sinh mũi họng, ăn uống lành mạnh, đủ chất, uống nhiều nước, tránh tiếp xúc với môi trường bụi bẩn,…
b) Tính số tiền phải trả khi bạn Dương gửi thư có khối lượng 150g, 200g.
Lời giải:
a) Quan sát bảng số liệu, ta thấy: Với mỗi khối lượng thư cơ bản x (g) có một và chỉ một mức cước tương ứng hay số tiền dịch vụ cơ bản phải trả y (đồng) tương ứng nên y là hàm số của x.
Ta có:
+ Nếu 0 < x ≤ 20 thì y = 4 000.
+ Nếu 20 < x ≤ 100 thì y = 6 000.
+ Nếu 100 < x ≤ 250 thì y = 8 000.
Khi đó, ta có công thức xác định y như sau:
.
b) Nếu bạn Dương gửi thư có khối lượng x = 150 g mà 100 < 150 < 250 nên tiền cước phải trả là y = 8 000 đồng.
Nếu bạn Dương gửi thư có khối lượng x = 200 g mà 100 < 200 < 250 nên tiền cước phải trả là y = 8 000 đồng.
Số tiền phải trả khi bạn Dương gửi thư có khối lượng 150 g, 200 g là:
8 000 + 8 000 = 16 000 (đồng).
Vậy tổng số tiền bạn Dương phải trả khi gửi thư có khối lượng 150g và 200g là 16 000 đống.
Bài 4 trang 38 Toán lớp 10 Tập 1: Cho hàm số y = – 2x2.
a) Tìm những điểm thuộc đồ thị hàm số có hoành độ lần lượt bằng – 2; 3 và 10.
b) Tìm những điểm thuộc đồ thị hàm số có tung độ bằng – 18.
Lời giải:
a) Điểm có hoành độ bằng – 2 hay x = – 2 thì tung độ y = (– 2) . (– 2)2 = – 8.
Điểm có hoành độ bằng 3 hay x = 3 thì tung độ y = (– 2) . 32 = – 18.
Điểm có hoành độ bằng 10 hay x = 10 thì tung độ y = (– 2) . 102 = – 200.
Vậy các điểm cần tìm có tọa độ là (– 2; – 8), (3; – 18) và (10; – 200).
b) Điểm có tung độ bằng – 18 hay y = – 18.
Khi đó: – 2x2 = – 18 ⇔ x2 = 9 ⇔ x = ± 3.
Vậy các điểm thuộc đồ thị hàm số có tung độ bằng – 18 là (3; – 18) và (– 3; – 18).
Bài 5 trang 38 Toán lớp 10 Tập 1: Cho đồ thị hàm số y = f(x) như Hình 8.
c) Tìm điểm thuộc đồ thị hàm số có tung độ bằng 0.
Lời giải:
a) Xác định các điểm A(1; – 2), O(0; 0) và B(2; – 1) lên mặt phẳng tọa độ ở Hình 8:
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số y = f(x) không đi qua điểm O(0; 0) nên điểm O(0; 0) không thuộc đồ thị hàm số đã cho.
Đồ thị hàm số đi qua hai điểm A, B nên hai điểm A(1; – 2) và B(2; – 1) thuộc đồ thị hàm số đã cho.
Vậy điểm có tọa độ (1; -2) và (2; -1) thuộc đồ thị hàm số và điểm có tọa độ (0; 0) không thuộc đồ thị hàm số đã cho.
b) Tại x = 0 dóng đường thẳng vuông góc với trục Ox cắt đồ thị hàm số tại điểm có tọa độ (0; -1) nên f(0) = -1.
Tại x = 3 dóng đường thẳng vuông góc với trục Ox cắt đồ thị hàm số tại điểm có tọa độ (3; 0) nên f(3) = 0.
Vậy f(0) = – 1; f(3) = 0.
c) Điểm thuộc đồ thị có tung độ bằng 0 hay y = 0
Tại điểm có y = 0 dóng đường thẳng vuông góc với trục tung cắt đồ thị tại điểm có tọa độ (3; 0).
Vậy điểm thuộc đồ thị có tung độ bằng 0 là điểm có tọa độ (3; 0).
Bài 6 trang 38 Toán lớp 10 Tập 1: Cho hàm số . Chứng tỏ hàm số đã cho:
a) Nghịch biến trên khoảng (0; + ∞);
b) Nghịch biến trên khoảng (– ∞; 0).
Lời giải:
Ta có: .
Biểu thức xác định khi x ≠ 0.
Do đó tập xác định của hàm số đã cho: D = .
a) Lấy hai giá trị x1, x2 tùy ý thuộc khoảng (0; + ∞) sao cho 0 < x1 < x2.
Khi đó và
Vì 0 < x1 < x2 nên hay f(x1) > f(x2).
Vậy hàm số đã cho nghịch biến trên khoảng (0; + ∞).
b) Lấy hai giá trị x1, x2 tùy ý thuộc khoảng (– ∞; 0) sao cho x1 < x2 < 0.
Khi đó và
Vì x1 < x2 < 0 nên hay f(x1) > f(x2).
Vậy hàm số đã cho nghịch biến trên khoảng (– ∞; 0).
Bài 7 trang 38 Toán lớp 10 Tập 1: Cho hàm số y = f(x) có đồ thị như Hình 9.
Chỉ ra khoảng đồng biến và khoảng nghịch biến của hàm số y = f(x).
Lời giải:
Quan sát đồ thị hàm số y = f(x) ở Hình 9, ta thấy:
+) Trong khoảng (-3; 0) đồ thị hàm số đã cho “đi lên” nên hàm số đã cho đồng biến trên khoảng (-3; 0)
+) Trong khoảng (0; 2) đồ thị hàm số đã cho “đi xuống” nên hàm số đã cho nghịch biến trên khoảng (0; 2).
Vậy hàm số đã cho đồng biến trên khoảng (-3; 0) và nghịch biến trên khoảng (0; 2).
Công ty A có giá khởi đầu là 3,75 triệu đồng cộng thêm 5 000 đồng cho mỗi ki-lô-mét chạy xe.
Lời giải:
Đổi 3,75 triệu đồng = 3 750 000 đồng; 2,5 triệu đồng = 2 500 000 đồng.
Gọi x (km) là tổng đoạn đường cần di chuyển của lớp (550 ≤ x ≤ 600) và y là chi phí lớp đó phải trả cho việc thuê xe.
Ta có với mỗi giá trị của x có đúng một giá trị của y nên y là hàm số của x.
Đối với công ty A, ta có số tiền cần trả được biểu diễn theo hàm số:
yA = 3 750 000 + 5000x
Vì 550 ≤ x ≤ 600 nên 6 500 000 ≤ 3 750 000 + 5000x ≤ 6 750 000 hay 6 500 000 ≤ yA ≤ 6 750 000.
Đối với công ty B, ta có số tiền cần trả được biểu diễn theo hàm số:
yB = 2 500 000 + 7500x
Vì 550 ≤ x ≤ 600 nên 6 625 000 ≤ 2 500 000 + 7500x ≤ 7 000 000 hay 6 625 000 ≤ yB ≤ 7 000 000.
Ta thấy khoảng chi phí cho việc thuê xe của công ty A thấp hơn so với khoảng chi phí cho việc thuê xe ở công ty B với cùng số ki – lô – mét di chuyển.
Vậy để chi phí là thấp nhất thì lớp đó nên chọn xe của công ty A.
Lý thuyết Hàm số và đồ thị
1. Hàm số
1.1. Định nghĩa
Cho tập hợp khác rỗng D ⊂ ℝ. Nếu với mỗi giá trị của x thuộc D có một và chỉ một giá trị tương ứng của y thuộc tập hợp số thực ℝ thì ta có một hàm số.
Ta gọi x là biến số và y là hàm số của x.
Tập D được gọi là tập xác định của hàm số.
Kí hiệu hàm số: y = f(x), x ∈ D.
Ví dụ:
a) Với hình tròn có bán kính r và đường kính d, ta có d = r. Như vậy d là hàm số của r vì mỗi giá trị của r chỉ cho đúng một giá trị của d.
b) Biểu thức y2 = x, như vậy ta thấy y không phải là hàm số của x vì khi x = 1 ta có hai giá trị của y là 1 và – 1.
1.2. Cách cho hàm số
a) Hàm số cho bằng một công thức
Hàm số được cho bằng biểu thức, cùng cách nói với hàm số cho bằng công thức.
Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa.
Ví dụ:
a) Tìm tập xác định của hàm số y = .
Biểu thức có nghĩa khi x – 20 ⇔ x ≠ 2, vì vậy tập xác định của hàm số đã cho là: .
b) Tìm tập xác định của hàm số y =
Biểu thức có nghĩa khi x – 2 ≥ 0 ⇔ x ≥ 2, vì vậy tập xác định của hàm số đã cho là:.
b) Hàm số cho bằng nhiều công thức
Một hàm số có thể được cho bằng nhiều công thức.
Ví dụ:
Cho hàm số: f(x) =
a) Tìm tập xác định của hàm số trên?
b) Tính giá trị của hàm số khi x = – 5; x = 0; x = 2022.
Hướng dẫn giải:
a) Hàm số f(x) có nghĩa khi x < 0; x > 0; x = 0 nên tập xác định của hàm số là: D = ℝ
b) Với x = –5 < 0 thì f(–5) = –1;
Với x = 0 thì f(0) = 0;
Với x = 2022 > 1 thì f(2022) = 1.
Vậy giá trị của hàm số tại x = –5; x = 0; x = 2022 lần lượt là f(–5) = –1; f(0) = 0; f(2022) = 1.
Chú ý: Giả sử hàm số y = f(x) có tập xác định là D. Khi biến số x thay đổi trong tập D thì tập hợp các giá trị y tương ứng được gọi là tập giá trị của hàm số.
c) Hàm số không cho bằng công thức
Trong thực tiễn, có những tình huống dẫn tới những hàm số không thể cho bằng không thức (hoặc nhiều công thức).
Ví dụ: Biểu đồ lượng mưa tại Hà Nội trong năm 2021 (Đơn vị: mm)
a) Xác định tập hợp các tháng được nêu trong biểu đồ.
b) Tương ứng tháng với lượng mưa trung bình của tháng đó có phải là hàm số không? Giải thích.
Giải:
a) Tập hợp các tháng là: D = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12}
b) Mỗi tháng tương ứng xác định với đúng một giá trị của lượng mưa nên tương ứng đó xác định một hàm số. Hàm số đó có thể được cho bằng bảng như sau:
Đồ thị của hàm số y = f(x) xác định trên tập hợp D là tập hợp tất cả các điểm
M(x; f(x)) trong mặt phẳng toạ độ Oxy với mọi x thuộc D.
Ví dụ: Cho hàm số y = x + 3.
a) Vẽ đồ thị hàm số trên.
b) Trong mặt phẳng toạ độ Oxy cho ba điểm: A(0; 3); B(1;2); C(1; 1). Xác định điểm thuộc và không thuộc đồ thị trên.
Giải:
a) Khi x = 0 thay vào hàm số y = x + 3 ta được y = 3 như vậy đồ thị cắt trục Oy tại điểm (0;3).
Khi y = 0 thay vào hàm số y = x + 3 ta được x = –3 như vậy đồ thị cắt trục Ox tại điểm (–3; 0). Ta vẽ được đồ thị đi qua hai điểm trên.
Đồ thị hàm số y = x + 3
b) Khi x = 0 thì y = 3; khi x = 1 thì y = 4. Vậy điểm điểm A(0; 3) thuộc đồ thị hàm số, điểm B(1; 2); C(1; 1) không thuộc đồ thị.
Chú ý:
– Điểm M(a; b) trong mặt phẳng toạ độ Oxy thuộc đồ thị hàm số y = f(x), x ∈ D khi và chỉ khi .
– Để chứng tỏ điểm M(a; b) trong mặt phẳng toạ độ không thuộc đồ thị hàm số
y = f(x), x ∈ D, ta có thể kiểm tra một trong hai khả năng sau:
Khả năng 1: Chứng tỏ rằng a ∉ D
Khả năng 2: Khi a ∈ D thì chứng tỏ rằng b ≠ f(a).
3. Sự biến của hàm số
Cho hàm số y = f(x) xác định trên khoảng (a; b):
– Hàm số y = f(x) gọi là đồng biến trên khoảng (a; b) nếu
– Hàm số y = f(x) gọi là nghịch biến trên khoảng (a; b) nếu
Ví dụ: Cho hàm số y = f(x) = x2
Xét sự biến thiên của hàm số trên khoảng (–∞; 0) và (0; +∞).
Hướng dẫn giải
+) Trên khoảng (–∞; 0) hàm số luôn xác định
Lấy x1, x2 ∈ (–∞; 0) thỏa mãn x1 < x2.
Vì x1 < x2 < 0 nên x12 > x22 hay f(x1) > f(x2)
Do đó hàm số nghịch biến trên (–∞; 0).
+) Trên khoảng (0; +∞) hàm số luôn xác định
Lấy x1, x2 ∈ (0; +∞) thỏa mãn x1 < x2.
Vì 0 < x1 < x2 nên x12 < x22 hay f(x1) < f(x2)
Do đó hàm số đồng biến trên (0; +∞).
Vậy hàm số đã cho nghịch biến trên (–∞; 0) và đồng biến trên (0; +∞).
Bảng biến thiên:
Đây là bảng thiên của hàm số y = x2.
– Dấu mũi tên đi lên từ 0 đến +∞ diễn ta hàm số đồng biến trên khoảng (0; +∞).
Đồ thị hàm số:
– Ta thấy hàm số nghịch biến trên khoảng (–∞; 0) khi đồ thị hàm số trên khoảng đó “đi xuống”.
– Hàm số đồng biến trên khoảng (0; +∞) khi đồ thị hàm số trên khoảng đó “đi lên”.
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Bài 3: Dấu của tam thức bậc hai
Bài 4: Bất phương trình bậc hai một ẩn
Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Xem thêm tài liệu Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều