Giải Toán 10 trang 38 Tập 1 Cánh diều
Với giải bài tập Toán lớp 10 trang 38 Tập 1 trong Bài 1: Hàm số và đồ thị sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 38 Tập 1.
Giải Toán 10 trang 38 Tập 1
b) Tính số tiền phải trả khi bạn Dương gửi thư có khối lượng 150g, 200g.
Lời giải:
a) Quan sát bảng số liệu, ta thấy: Với mỗi khối lượng thư cơ bản x (g) có một và chỉ một mức cước tương ứng hay số tiền dịch vụ cơ bản phải trả y (đồng) tương ứng nên y là hàm số của x.
Ta có:
+ Nếu 0 < x ≤ 20 thì y = 4 000.
+ Nếu 20 < x ≤ 100 thì y = 6 000.
+ Nếu 100 < x ≤ 250 thì y = 8 000.
Khi đó, ta có công thức xác định y như sau:
.
b) Nếu bạn Dương gửi thư có khối lượng x = 150 g mà 100 < 150 < 250 nên tiền cước phải trả là y = 8 000 đồng.
Nếu bạn Dương gửi thư có khối lượng x = 200 g mà 100 < 200 < 250 nên tiền cước phải trả là y = 8 000 đồng.
Số tiền phải trả khi bạn Dương gửi thư có khối lượng 150 g, 200 g là:
8 000 + 8 000 = 16 000 (đồng).
Vậy tổng số tiền bạn Dương phải trả khi gửi thư có khối lượng 150g và 200g là 16 000 đống.
Bài 4 trang 38 Toán lớp 10 Tập 1: Cho hàm số y = – 2x2.
a) Tìm những điểm thuộc đồ thị hàm số có hoành độ lần lượt bằng – 2; 3 và 10.
b) Tìm những điểm thuộc đồ thị hàm số có tung độ bằng – 18.
Lời giải:
a) Điểm có hoành độ bằng – 2 hay x = – 2 thì tung độ y = (– 2) . (– 2)2 = – 8.
Điểm có hoành độ bằng 3 hay x = 3 thì tung độ y = (– 2) . 32 = – 18.
Điểm có hoành độ bằng 10 hay x = 10 thì tung độ y = (– 2) . 102 = – 200.
Vậy các điểm cần tìm có tọa độ là (– 2; – 8), (3; – 18) và (10; – 200).
b) Điểm có tung độ bằng – 18 hay y = – 18.
Khi đó: – 2x2 = – 18 ⇔ x2 = 9 ⇔ x = ± 3.
Vậy các điểm thuộc đồ thị hàm số có tung độ bằng – 18 là (3; – 18) và (– 3; – 18).
Bài 5 trang 38 Toán lớp 10 Tập 1: Cho đồ thị hàm số y = f(x) như Hình 8.
c) Tìm điểm thuộc đồ thị hàm số có tung độ bằng 0.
Lời giải:
a) Xác định các điểm A(1; – 2), O(0; 0) và B(2; – 1) lên mặt phẳng tọa độ ở Hình 8:
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số y = f(x) không đi qua điểm O(0; 0) nên điểm O(0; 0) không thuộc đồ thị hàm số đã cho.
Đồ thị hàm số đi qua hai điểm A, B nên hai điểm A(1; – 2) và B(2; – 1) thuộc đồ thị hàm số đã cho.
Vậy điểm có tọa độ (1; -2) và (2; -1) thuộc đồ thị hàm số và điểm có tọa độ (0; 0) không thuộc đồ thị hàm số đã cho.
b) Tại x = 0 dóng đường thẳng vuông góc với trục Ox cắt đồ thị hàm số tại điểm có tọa độ (0; -1) nên f(0) = -1.
Tại x = 3 dóng đường thẳng vuông góc với trục Ox cắt đồ thị hàm số tại điểm có tọa độ (3; 0) nên f(3) = 0.
Vậy f(0) = – 1; f(3) = 0.
c) Điểm thuộc đồ thị có tung độ bằng 0 hay y = 0
Tại điểm có y = 0 dóng đường thẳng vuông góc với trục tung cắt đồ thị tại điểm có tọa độ (3; 0).
Vậy điểm thuộc đồ thị có tung độ bằng 0 là điểm có tọa độ (3; 0).
Bài 6 trang 38 Toán lớp 10 Tập 1: Cho hàm số . Chứng tỏ hàm số đã cho:
a) Nghịch biến trên khoảng (0; + ∞);
b) Nghịch biến trên khoảng (– ∞; 0).
Lời giải:
Ta có: .
Biểu thức xác định khi x ≠ 0.
Do đó tập xác định của hàm số đã cho: D = .
a) Lấy hai giá trị x1, x2 tùy ý thuộc khoảng (0; + ∞) sao cho 0 < x1 < x2.
Khi đó và
Vì 0 < x1 < x2 nên hay f(x1) > f(x2).
Vậy hàm số đã cho nghịch biến trên khoảng (0; + ∞).
b) Lấy hai giá trị x1, x2 tùy ý thuộc khoảng (– ∞; 0) sao cho x1 < x2 < 0.
Khi đó và
Vì x1 < x2 < 0 nên hay f(x1) > f(x2).
Vậy hàm số đã cho nghịch biến trên khoảng (– ∞; 0).
Bài 7 trang 38 Toán lớp 10 Tập 1: Cho hàm số y = f(x) có đồ thị như Hình 9.
Chỉ ra khoảng đồng biến và khoảng nghịch biến của hàm số y = f(x).
Lời giải:
Quan sát đồ thị hàm số y = f(x) ở Hình 9, ta thấy:
+) Trong khoảng (-3; 0) đồ thị hàm số đã cho “đi lên” nên hàm số đã cho đồng biến trên khoảng (-3; 0)
+) Trong khoảng (0; 2) đồ thị hàm số đã cho “đi xuống” nên hàm số đã cho nghịch biến trên khoảng (0; 2).
Vậy hàm số đã cho đồng biến trên khoảng (-3; 0) và nghịch biến trên khoảng (0; 2).
Công ty A có giá khởi đầu là 3,75 triệu đồng cộng thêm 5 000 đồng cho mỗi ki-lô-mét chạy xe.
Lời giải:
Đổi 3,75 triệu đồng = 3 750 000 đồng; 2,5 triệu đồng = 2 500 000 đồng.
Gọi x (km) là tổng đoạn đường cần di chuyển của lớp (550 ≤ x ≤ 600) và y là chi phí lớp đó phải trả cho việc thuê xe.
Ta có với mỗi giá trị của x có đúng một giá trị của y nên y là hàm số của x.
Đối với công ty A, ta có số tiền cần trả được biểu diễn theo hàm số:
yA = 3 750 000 + 5000x
Vì 550 ≤ x ≤ 600 nên 6 500 000 ≤ 3 750 000 + 5000x ≤ 6 750 000 hay 6 500 000 ≤ yA ≤ 6 750 000.
Đối với công ty B, ta có số tiền cần trả được biểu diễn theo hàm số:
yB = 2 500 000 + 7500x
Vì 550 ≤ x ≤ 600 nên 6 625 000 ≤ 2 500 000 + 7500x ≤ 7 000 000 hay 6 625 000 ≤ yB ≤ 7 000 000.
Ta thấy khoảng chi phí cho việc thuê xe của công ty A thấp hơn so với khoảng chi phí cho việc thuê xe ở công ty B với cùng số ki – lô – mét di chuyển.
Vậy để chi phí là thấp nhất thì lớp đó nên chọn xe của công ty A.
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Bài 3: Dấu của tam thức bậc hai
Bài 4: Bất phương trình bậc hai một ẩn
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều