Giải Toán 10 trang 71 Tập 1 Cánh diều

Với giải bài tập Toán lớp 10 trang 71 Tập 1 trong Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 71 Tập 1.

1 461 16/02/2023


Giải Toán 10 trang 71 Tập 1

Bài 1 trang 71 Toán lớp 10 Tập 1: Cho tam giác ABC có AB = 3,5; AC = 7,5; A^=135°. Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

Lời giải:

Áp dụng định lí côsin vào tam giác ABC ta có:

BC2 = AB2 + AC2 - 2.AB.AC.cos A^

 BC2 = (3,5)2 + (7,5)2 - 2 . 3,5 . 7,5 . cos 135o

 BC2 ≈ 105,6

 BC ≈ 10,3

Áp dụng định lí sin vào tam giác ABC ta có:

BCsinA=2R

2R=10,3sin135°

 2R ≈ 14,6

 R ≈ 7,3

Vậy BC ≈ 10,3; R ≈ 7,3.

Bài 2 trang 71 Toán lớp 10 Tập 1: Cho tam giác ABC có B^=75°,C^=45° và BC = 50. Tính độ dài cạnh AB.

Lời giải:

Trong tam giác ABC: A^=180°B^C^=180°75°45°=60°.

Áp dụng định lí sin vào tam giác ABC ta có:

BCsinA=ABsinC

Thay số ta được: 50sin60°=ABsin45°

5032=AB22

50.22=AB.32

252=AB.32

AB=252:32

AB=5063

Vậy AB=5063.

Bài 3 trang 71 Toán lớp 10 Tập 1: Cho tam giác ABC có AB = 6, AC = 7, BC = 8. Tính cosA, sinA và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Lời giải:

Áp dụng định lí côsin vào tam giác ABC ta có:

BC2 = AB2 + AC2 - 2.AB.AC.cosA

 cosA = AB2+AC2BC22.AB.AC

 cosA = 62+72822.6.7

 cosA = 14

A^ ≈ 75,5o

 sinA ≈ 0,97

Áp dụng định lí sin vào tam giác ABC ta có:

BCsinA=2R

2R=80,97

 2R ≈ 8,25

 R ≈ 4,13

Vậy cosA = 14; sinA ≈ 0,97; R ≈ 4,13.

Bài 4 trang 71 Toán lớp 10 Tập 1: Tính giá trị đúng của các biểu thức sau (không dùng máy tính cầm tay):

a) A = cos 0° + cos 40° + cos 120° + cos 140°;

b) B = sin 5° + sin 150° – sin 175° + sin 180°;

c) C = cos 15° + cos 35° – sin 75° – sin 55°; 

d) D = tan 25° . tan 45° . tan 115°;

e) E = cot 10° . cot 30° . cot 100°. 

Lời giải:

a) A = cos 0° + cos 40° + cos 120° + cos 140°

A = 1 + cos(180o - 140o) + (12) + cos 140o

A = 1 + (12) - cos 140o + cos 140o

A = 12.

b) B = sin 5° + sin 150° – sin 175° + sin 180°

B = sin(180o - 175o) - sin 175o + sin 150° + sin 180°

B = sin 175o - sin 175o + 12 + 0

B = 12.

c) C = cos 15° + cos 35° – sin 75° – sin 55°

C = cos(90o - 75o) - sin 75o + cos(90o - 55o) - sin 55o

C = sin 75o - sin 75o + sin 55o - sin 55o

C = 0.

d) D = tan 25° . tan 45° . tan 115°

D = tan(90o - 65o) . tan 45o . tan(180o - 65o)

D = cot 65o . tan 45o . (– tan 65°)

D = – (cot 65° . tan 65°) . tan 45°

D = cos65°sin65°.sin65°cos65°.tan45°

D = -1 . 1

D = -1.

e) E = cot 10° . cot 30° . cot 100°. 

E = cot(90o - 80o) . cot 30o . cot(180o - 80o)

E = tan 80o . cot 30o . (- cot 80o)

E = – (tan 80° . cot 80°) . cot 30°

E = (– 1) . 3

E = 3.

Bài 5 trang 71 Toán lớp 10 Tập 1: Cho tam giác ABC. Chứng minh:

a) sinA2=cosB+C2;

b) tanB+C2=cotA2.

Lời giải:

a) Trong tam giác ABC ta có: A^=180°B^+C^.

Khi đó A^2=180°B^+C^2=90°B^+C^2.

Suy ra A2^ B^+C^2 là hai góc phụ nhau.

Do đó sinA2=cos90°A2=cosB+C2

Vậy sinA2=cosB+C2.

b) Do A2^ B^+C^2 là hai góc phụ nhau nên cotA2=tan90°A2=tanB+C2.

Vậy tanB+C2=cotA2.

Bài 6 trang 71 Toán lớp 10 Tập 1: Để đo khoảng cách từ vị trí A đến vị trí B ở hai bên bờ một cái ao, bạn An đi dọc bờ ao từ vị trí A đến vị trí C và tiến hành đo các góc BAC, BCA. Biết AC = 25 m, BAC^=59,95°,  BAC^=82,15° (Hình 16). Hỏi khoảng cách từ vị trí A đến vị trí B là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác - Cánh diều (ảnh 1)

Lời giải:

Ba vị trí A, B, C tạo thành ba đỉnh của tam giác.

Trong tam giác ABC:

B^=180°A^C^=180°59,95°82,15°=37,9°.

Áp dụng định lí sin vào tam giác ABC ta có:

ACsinB=ABsinC

Thay số ta được: 25sin37,9°=ABsin82,15°

AB=25sin37,9°.sin82,15°

 AB ≈ 40 m.

Vậy khoảng cách từ A đến B khoảng 40 m.

Bài 7 trang 71 Toán lớp 10 Tập 1: Hai tàu đánh cá cùng xuất phát từ bến A và đi thẳng đều về hai vùng biển khác nhau, theo hướng tạo với nhau góc 75°. Tàu thứ nhất chạy với tốc độ 8 hải lí một giờ và tàu thứ hai chạy với tốc độ 12 hải lí một giờ. Sau 2,5 giờ thì khoảng cách giữa hai tàu là bao nhiêu hải lí (làm tròn kết quả đến hàng phần mười)?

Lời giải:

Sau 2,5 giờ tàu thứ nhất đi được: 8 . 2,5 = 20 hải lí.

Sau 2,5 giờ tàu thứ hai đi được: 12 . 2,5 = 30 hải lí.

Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác - Cánh diều (ảnh 1)

Gọi AC là quãng đường tàu thứ nhất đi được sau 2,5 giờ; AB là quãng đường tàu thứ hai đi được sau 2,5 giờ.

Khi đó khoảng cách giữa hai tàu là BC.

Ba vị trí A, B, C tạo thành ba đỉnh của tam giác.

Áp dụng định lí côsin vào tam giác ABC:

BC2 = AB2 + AC2 - 2.AB.AC.cosA

 BC2 = 302 + 202 - 2.30.20.cos 75o

 BC2 ≈ 989,4

 BC ≈ 31,5 hải lí.

Vậy sau 2,5 giờ thì khoảng cách giữa hai tàu khoảng 31,5 hải lí.

Bài 8 trang 71 Toán lớp 10 Tập 1: Bạn A đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn A tới chiếc diều và phương nằm ngang) là α = 35°; khoảng cách từ đỉnh tòa nhà tới mắt bạn A là 1,5 m. Cùng lúc đó ở dưới chân tòa nhà, bạn B cũng quan sát chiếc diều và thấy góc nâng là β = 75°; khoảng cách từ mặt đất đến mắt bạn B cũng là 1,5 m. Biết chiều cao của tòa nhà là h = 20 m (Hình 17). Chiếc diều bay cao bao nhiêu mét so với mặt đất (làm tròn kết quả đến hàng đơn vị)?

Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác - Cánh diều (ảnh 1)

Lời giải:

Ta đặt tên các điểm như hình vẽ dưới:

 Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác - Cánh diều (ảnh 1)

AC là khoảng cách từ đỉnh của tòa nhà tới mắt bạn A và BD là khoảng cách từ mặt đất tới mắt của bạn B nên AC = 1,5 m và BD = 1,5 m.

Do AC = BD = 1,5 m nên AC + BC = BD + BC hay AB = CD = h.

Do đó AB = 20 m.

Do β=75° nên ABG^=90β=90°75°=15°.

Do α=35° nên trong tam giác ABG có:

AGB^=180°ABG^BAG^=180°15°90°+35°=40°

Áp dụng định lí sin vào tam giác ABG có:

BGsinBAG^=ABsinAGB^

Thay số ta được: BGsin125°=20sin40°

BG=20sin40°.sin125°

 BG ≈ 25,5 m.

Xét tam giác vuông BEG có:

sinEBG^=EGBG

sin75°=EG25,5

 EG = 25,5 . sin 75o

 EG ≈ 24,6 m.

Ta thấy BD = EF nên EF = 1,5 m.

Khi đó GF = EG + EF = 24,6 + 1,5 = 26,1 m ≈ 26 m.

Vậy chiếc diều bay cao khoảng 26 m so với mặt đất.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Giải Toán 10 trang 62 Tập 1

Giải Toán 10 trang 63 Tập 1

Giải Toán 10 trang 64 Tập 1

Giải Toán 10 trang 66 Tập 1

Giải Toán 10 trang 67 Tập 1

Giải Toán 10 trang 68 Tập 1

Giải Toán 10 trang 69 Tập 1

Giải Toán 10 trang 70 Tập 1

Giải Toán 10 trang 71 Tập 1

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 2: Giải tam giác

Bài 3: Khái niệm vectơ

Bài 4: Tổng và hiệu của hai vectơ

Bài 5: Tích của một số với một vectơ

Bài 6: Tích vô hướng của hai vectơ

1 461 16/02/2023


Xem thêm các chương trình khác: