Giải Toán 10 trang 54 Tập 1 Cánh diều

Với giải bài tập Toán lớp 10 trang 54 Tập 1 trong Bài 4: Bất phương trình bậc hai một ẩn sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 54 Tập 1.

1 396 16/02/2023


Giải Toán 10 trang 54 Tập 1

Bài 1 trang 54 Toán lớp 10 Tập 1Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc hai một ẩn? Vì sao?

a) – 2x + 2 < 0; 

b) 12y22y+10;

c) y2 + x2 – 2x ≥ 0. 

Lời giải:

a) Bất phương trình – 2x + 2 < 0 bất phương trình bậc nhất một ẩn nên không là bất phương trình bậc hai một ẩn.

b) Ta có: 12y22y+1012y22y20 là bất phương trình bậc hai một ẩn với a=120,b=c=2.

c) Bất phương trình y2 + x2 – 2x ≥ 0 có hai ẩn x và y nên đây không là bất phương trình bậc hai một ẩn.

Bài 2 trang 54 Toán lớp 10 Tập 1Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 30a, 30b, 30c, hãy viết tập nghiệm của mỗi bất phương trình sau: f(x) > 0, f(x) < 0; f(x) ≥ 0; f(x) ≤ 0.

Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 30a, 30b, 30c, hãy viết tập nghiệm

Lời giải:

a)

+) Với x < 1 hoặc x > 4 thì phần parabol y = f(x) nằm phía trên trục hoành.

Do đó f(x) > 0 khi x < 1 hoặc x > 4.

Suy ra tập nghiệm của bất phương trình f(x) > 0 là (– ∞; 1) (4; + ∞).

+) f(x) cắt trục hoành tại hai điểm x = 1 và x = 4 hay f(x) = 0 khi x = 1 hoặc x = 4.

Mà f(x) > 0 khi x < 1 hoặc x > 4.

Do đó tập nghiệm của bất phương trình f(x) ≥ 0 là (– ∞; 1] [4; + ∞).

+) Với 1 < x < 4 thì phần parabol y = f(x) nằm phía dưới trục hoành.

Do đó f(x) < 0 khi 1 < x < 4.

Suy ra tập nghiệm của bất phương trình f(x) < 0 là (1; 4).

+) f(x) cắt trục hoành tại hai điểm x = 1 và x = 4 hay f(x) = 0 khi x = 1 hoặc x = 4.

Mà f(x) < 0 khi 1 < x < 4

Do đó tập nghiệm của bất phương trình f(x) ≤ 0 là [1; 4].

Vậy:

Tập nghiệm của bất phương trình f(x) > 0 là (– ∞; 1) (4; + ∞).

Tập nghiệm của bất phương trình f(x) f(x) ≥ 0 là (– ∞; 1] [4; + ∞).

Tập nghiệm của bất phương trình f(x) < 0 là (1; 4).

Tập nghiệm của bất phương trình f(x) ≤ 0 là [1; 4].

b)

+) Với mọi x ≠ 2 thì phần parabol f(x) nằm hoàn toàn phía trên trục hoành.

Do đó f(x) > 0 với mọi x ≠ 2.

Suy ra tập nghiệm của bất phương trình f(x) > 0 là \2.

+) Tại x = 2 thì f(x) = 0.

Mà f(x) > 0 với mọi x ≠ 2.

Do đó tập nghiệm của bất phương trình f(x) ≥ 0 là .

+) f(x) < 0 biểu diễn phần parabol y = f(x) nằm hoàn toàn phía dưới trục hoành, mà phần đồ thị ở hình 30b nằm phía trên trục hoành.

Do đó bất phương trình f(x) < 0 vô nghiệm.

+) Tại x = 2 thì f(x) = 0 và không tồn tại x để f(x) < 0 nên nghiệm của bất phương trình f(x) ≤ 0 là x = 2.

Do đó tập nghiệm của bất phương trình f(x) ≤ 0 là {2}.

Vậy:

Tập nghiệm của bất phương trình f(x) > 0 là \2.

Tập nghiệm của bất phương trình f(x) ≥ 0 là .

Tập nghiệm của bất phương trình f(x) < 0 là .

Tập nghiệm của bất phương trình f(x) ≤ 0 là {2}.

c)

+) Với mọi x parabol nằm hoàn toàn phía trên trục hoành.

Do đó f(x) > 0 với mọi x hay f(x) ≥ 0 với mọi x.

+) Các bất phương trình f(x) < 0,  f(x) ≤ 0 đều vô nghiệm.

Vậy:

Tập nghiệm của bất phương trình f(x) > 0 là .

Tập nghiệm của bất phương trình f(x) ≥ 0 là .

Tập nghiệm của bất phương trình f(x) < 0 là .

Tập nghiệm của bất phương trình f(x) ≤ 0 là .

Bài 3 trang 54 Toán lớp 10 Tập 1Giải các bất phương trình sau:

a) 2x2 – 5x + 3 > 0;

b) – x2 – 2x + 8 ≤ 0; 

c) 4x2 – 12x + 9 < 0; 

d) – 3x2 + 7x – 4 ≥ 0.

Lời giải:

a) Tam thức bậc hai 2x2 – 5x + 3 có:

∆ = (-5)2 – 4.2.3 = 25 – 24 = 1 > 0

Do đó tam thức có hai nghiệm x1 = 1, x2 = 32 và có hệ số a = 2 > 0.

Khi đó ta có bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Tam thức 2x2 – 5x + 3 mang dấu “+” khi x < 1 hoặc x > 32.

Hay 2x2 – 5x + 3 > 0 khi x < 1 hoặc x > 32.

Vậy tập nghiệm của bất phương trình 2x2 – 5x + 3 > 0 là ;132;+.

b)

Tam thức bậc hai – x2 – 2x + 8 có:

∆’ = (-1)2 – (-1).8 = 1 + 8 = 9 > 0

Suy ra tam thức có hai nghiệm là x1 = – 4, x2 = 2 và hệ số a = – 1 < 0.

Khi đó ta có bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Tam thức – x2 – 2x + 8 không dương khi x ≤ – 4 hoặc x ≥ 2.

Hay – x2 – 2x + 8 ≤ 0 khi x ≤ – 4 hoặc x ≥ 2.

Vậy tập nghiệm của bất phương trình – x2 – 2x + 8 là (– ∞; – 4] [2; + ∞).

c)

Tam thức bậc hai 4x2 – 12x + 9 có ∆’ = (– 6)2 – 4 . 9 = 0.

Do đó tam thức trên có nghiệm kép là x = 32.

Ta có hệ số a = 4 > 0.

Khi đó ta có bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Tam thức 4x2 – 12x + 9 > 0 với mọi x\32 và 4x2 – 12x + 9 = 0 tại x = 32.

Do đó không tồn tại giá trị nào của x để 4x2 – 12x + 9 < 0

Vậy bất phương trình đã cho vô nghiệm.

d)

Tam thức bậc hai – 3x2 + 7x – 4 có:

∆ = 72 – 4.(-3).(-4) = 49 – 48 == 1 > 0

Suy ra tam thức có hai nghiệm x1 = 1, x2 = 43 và hệ số a = – 3 < 0.

Khi đó ta có bảng xét dấu:

Giải Toán 10 Bài 4: Bất phương trình bậc hai một ẩn - Cánh diều (ảnh 1)

Tam thức – 3x2 + 7x – 4 không âm khi 1x43.

Vậy tập nghiệm của bất phương trình – 3x2 + 7x – 4 ≥ 0 là 1;  43.

Bài 4 trang 54 Toán lớp 10 Tập 1Tìm m để phương trình 2x2 + (m + 1)x + m – 8 = 0 có nghiệm.

Lời giải:

Phương trình 2x2 + (m + 1)x + m – 8 = 0 (1) là phương trình bậc hai một ẩn có: a = 2, b = m + 1, c = m – 8 (m là tham số)

∆ = (m + 1)2 – 4 . 2 . (m – 8) = m2 + 2m + 1 – 8m + 64 = m2 – 6m + 65.

Để phương trình (1) có nghiệm khi và chỉ khi ∆ ≥ 0 m2 – 6m + 65 ≥ 0

Xét tam thức bậc hai m2 – 6m + 65 có:

m = (– 6)2 – 4 . 1 . 65 = – 224 < 0 và hệ số am = 1 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, tam thức m2 – 6m + 65 mang dấu dương với mọi m.

Do đó m2 – 6m + 65 > 0 với mọi số thực m.

Vậy phương trình đã cho luôn có nghiệm với mọi giá trị thực của m.

Bài 5 trang 54 Toán lớp 10 Tập 1Xét hệ tọa độ Oth trên mặt phẳng, trong đó trục Ot biểu thị thời gian t (tính bằng giây) và trục Oh biểu thị độ cao h (tính bằng mét). Một quả bóng được đá lên từ điểm A(0; 0,2) và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 8,5 m sau 1 giây và đạt độ cao 6 m sau 2 giây.

a) Hãy tìm hàm số bậc hai biểu thị quỹ đạo chuyển động của quả bóng. 

b) Trong khoảng thời gian nào thì quả bóng vẫn chưa chạm đất? 

Lời giải:

a) Chuyển động của quả bóng theo quỹ đạo parabol và với mỗi thời gian t ta có được duy nhất một chiều cao h tương ứng nên ta có h = at2 + bt + c với a, b, c là các hệ số và a ≠ 0.

Quả bóng được đá lên từ điểm A(0; 0,2) nên thay t = 0 và h = 0,2 vào hàm số ta được: 0,2 = a.02 + b.0 + c c = 0,2 (1)

Quả bóng đạt độ cao 8,5 m sau 1 giây nên thay t = 1 và h = 8,5 vào hàm số ta được:

8,5 = a.12 + b.1 + c a + b + c = 8,5 (2)

Quả bóng đạt độ cao 6 m sau 2 giây nên thay t = 2 và h = 6 vào hàm số ta được:

6 = a.22 + b.2 + c 4a + 2b + c = 6 (3)

Từ (1), (2) và (3) ta có hệ phương trình:

a+b+c=8,54a+2b+c=6c=0,2a+b+0,2=8,54a+2b+0,2=6c=0,2a+b=8,34a+2b=5,8c=0,2a=5,4b=13,7c=0,2  

h = -5,4t2 + 13,7t + 0,2.

Vậy hàm số bậc hai biểu thị quỹ đạo chuyển động của quả bóng là: h = – 5,4t2 + 13,7t + 0,2.

b) Bóng chạm đất nếu khi độ cao h = 0, vậy bóng chưa chạm đất khi độ cao h > 0 hay – 5,4t2 + 13,7t + 0,2 > 0

Xét tam thức bậc hai – 5,4t2 + 13,7t + 0,2 có:

∆ = 13,72 – 4.(-5,4).0,2 = 192,01 > 0

Suy ra tam thức có hai nghiệm t1 = 13710819201108, t2=137108+19201108.

Ta lại có a = -5,4 < 0

Sử dụng định lí về dấu của tam thức bậc hai ta có – 5,4t2 + 13,7t + 0,2 > 0

13710819201108<t<137108+19201108

Lại có: thời gian t > 0

Do đó: 0<t<137108+19201108  137108+192011082,55 hay 0 < t < 2,55.

Vậy trong khoảng thời gian từ 0 đến 2,55 giây thì bóng vẫn chưa chạm đất.

Bài 6 trang 54 Toán lớp 10 Tập 1Công ty An Bình thông báo giá tiền cho chuyến đi tham quan của một nhóm khách du lịch như sau:

10 khách đầu tiên có giá vé là 800 000 đồng/người. Nếu có nhiều hơn 10 người đăng kí thì cứ có thêm 1 người, giá vẽ sẽ giảm 10 000 đồng/người cho toàn bộ hành khách.

a) Gọi x là số lượng khách từ người thứ 11 trở lên của nhóm. Biểu thị doanh thu theo x. 

b) Số người của nhóm khách du lịch nhiều nhất là bao nhiêu thì công ty không bị lỗ? Biết rằng chi phí thực sự cho chuyến đi là 700 000 đồng/người.

Lời giải:

a) x là số lượng khách từ người thứ 11 trở lên của nhóm. (x*)

Tổng số khách là: 10 + x  (người)

Nếu có nhiều hơn 10 người đăng kí thì cứ thêm 1 người, giá vé của mỗi người được giảm là: 10 000x (đồng).

Do đó giá vé cho một người là: 800 000 – 10 000x (đồng)

Giá tiền toàn bộ hành khách phải trả là: (800 000 – 10 000x)(10 + x)

= 8 000 000 + 800 000x – 100 000x – 10 000x2

= – 10 000x2 + 700 000x + 8 000 000 (đồng).

Vậy biểu thức tính doanh thu của công ty theo x là: – 10 000x2 + 700 000x + 8 000 000.

b) Chi phí thực sự cho chuyến đi là 700 000 đồng/người nên tổng chi phí cho 10 + x người tham gia là 700 000(10 + x) = 7 000 000 + 700 000x(đồng).

Để công ty không bị lỗ thì doanh thu phải lớn hơn hoặc bằng tổng chi phí.

Do đó – 10 000x2 + 700 000x + 8 000 000 ≥ 7 000 000 + 700 000x

– 10 000x2 + 1 000 000 ≥ 0

x2 – 100 ≤ 0

Áp dụng định lý dấu của tam thức bậc hai, ta giải được bất phương trình trên.

Ta có: x2 – 100 ≤ 0 – 10 ≤ x ≤ 10,

Mà x là số tự nhiên nên 0 ≤ x ≤ 10.

Do đó thêm nhiều nhất là 10 người nữa thì công ty không bị lỗ hay số người của nhóm khách du lịch lúc này là 10 + 10 = 20 người.

Vậy số người có nhóm du lịch nhiều nhất 20 người thì công ty không bị lỗ.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Giải Toán 10 trang 49 Tập 1

Giải Toán 10 trang 50 Tập 1

Giải Toán 10 trang 51 Tập 1

Giải Toán 10 trang 53 Tập 1

Giải Toán 10 trang 54 Tập 1

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 3: Dấu của tam thức bậc hai

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác

1 396 16/02/2023


Xem thêm các chương trình khác: