Bài 7 trang 86 Toán 10 Tập 2 | Cánh diều Giải Toán lớp 10
Lời giải Bài 7 trang 86 Toán 10 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
Giải Toán 10 Cánh diều Bài 4:Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
Bài 7 trang 86 Toán 10 Tập 2: Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của tàu A có tọa độ được xác định bởi công thức: , vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t).
a) Tính côsin góc giữa hai đường đi của hai tàu A và B.
b) Sau bao lâu kể từ thời điểm xuất phát hai tàu gần nhau nhất?
c) Nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng bao nhiêu?
Lời giải
a) Giả sử đường đi của tàu A là đường thẳng ∆1, phương trình tham số của đường thẳng ∆1 là: . Đường thẳng ∆1 có vectơ chỉ phương là .
Đường đi của tàu B là ∆2, vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t), do đó phương trình tham số của đường thẳng ∆2: . Đường thẳng ∆2 có vectơ chỉ phương là .
Khi đó .
Vậy côsin góc giữa hai đường đi của hai tàu A và B là .
b) +) Ứng với t = 0, thay vào phương trình tham số của ∆1 ta có: .
Do đó điểm A(3; – 4) thuộc ∆1.
Đường thẳng ∆1 đi qua điểm A(3; – 4) và có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của ∆1 là:
5(x – 3) + 7(y + 4) = 0 hay 5x + 7y + 13 = 0.
+) Ứng với t = 0, thay vào phương trình tham số của ∆2 ta có: .
Do đó điểm B(4; 3) thuộc ∆2.
Đường thẳng ∆2 đi qua điểm B(4; 3) và có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của ∆2 là:
4(x – 4) – 3(y – 3) = 0 hay 4x – 3y – 7 = 0.
+) Tọa độ giao điểm của hai đường thẳng ∆1 và ∆2 là nghiệm của hệ phương trình:
.
Hệ trên có nghiệm duy nhất .
Suy ra hai đường thẳng ∆1 và ∆2 cắt nhau tại điểm có tọa độ .
Khi đó hai tàu A và tàu B gần nhau nhất khi hai tàu ở vị trí tọa độ .
Thay tọa độ vào phương trình tham số ∆1 ta được:
.
Vậy sau giờ kể từ thời điểm xuất phát thì hai tàu gần nhau nhất.
c) Tàu A đứng yên ở vị trí ban đầu nên tàu A đứng ở vị trí có tọa độ A(3; – 4) (ứng với t = 0).
Khoảng cách ngắn nhất giữa hai tàu là khoảng cách từ điểm A đến đường đi của tàu B (đường thẳng ∆2: 4x – 3y – 7 = 0).
Ta có: d(A, ∆2) = .
Vậy nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng 3,4 km.
*Phương pháp giải:
*Lý thuyết:
1. Vị trí tương đối giữa hai đường thẳng
- Mỗi đường thẳng trong mặt phẳng tọa độ là một tập hợp những điểm có tọa độ thỏa mãn phương trình của đường thẳng đó. Vì vậy, bài toán tìm giao điểm của hai đường thẳng được quy về bài toán giải hệ gồm hai phương trình tương ứng.
Trên mặt phẳng tọa độ, xét hai đường thẳng ∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0.
Khi đó, tọa độ giao điểm của ∆1 và ∆2 là nghiệm của hệ phương trình:
∆1 cắt ∆2 tại M(x0 ; y0) khi và chỉ khi hệ (*) có nghiệm duy nhất (x0; y0).
∆1 song song với ∆2 khi và chỉ khi hệ (*) vô nghiệm.
∆1 trùng ∆2 khi và chỉ khi hệ (*) có vô số nghiệm.
Chú ý:
Dựa vào các vectơ chỉ phương , hoặc các vectơ pháp tuyến , của ∆1, ∆2 ta có:
+ ∆1 và ∆2 song song hoặc trùng nhau ⇔ và cùng phương ⇔ và cùng phương.
+ ∆1 và ∆2 cắt nhau ⇔ và không cùng phương ⇔ và không cùng phương.
2. Góc giữa hai đường thẳng
- Hai đường thẳng cắt nhau tạo thành bốn góc, số đo của góc không tù được gọi là số đo góc (hay đơn giản là góc) giữa hai đường thẳng.
- Góc giữa hai đường thẳng song song hoặc trùng nhau được quy ước bằng 0°.
Ví dụ: Góc giữa hai đường thẳng ∆1 và ∆2 trong hình sau là góc φ.
- Cho hai đường thẳng ∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0.
Với các vectơ pháp tuyến và tương ứng. Khi đó, góc φ giữa hai đường thẳng đó được xác định thông qua công thức:
Chú ý:
+) ∆1 ⊥ ∆2 ⇔⇔ a1a2 + b1b2 = 0.
+) Nếu ∆1, ∆2 có các vectơ chỉ phương , thì góc φ giữa ∆1 và ∆2 cũng được xác định thông qua công thức cos φ = |cos()|.
3. Khoảng cách từ một điểm đến một đường thẳng
Cho điểm M(x0 ; y0) và đường thẳng ∆: ax + by + c = 0. Khoảng cách từ điểm M đến đường thẳng ∆, kí hiệu d(M, ∆), được tính bởi công thức:
Xem thêm
Lý thuyết Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách - Toán 10 Kết nối tri thức
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 81 Toán 10 Tập 2: Nêu vị trí tương đối của hai đường thẳng trong mặt phẳng...
Luyện tập 1 trang 82 Toán 10 Tập 2: Xét vị trí tương đối của hai đường thẳng và ...
Luyện tập 4 trang 85 Toán 10 Tập 2: a) Tính khoảng cách từ điểm O(0; 0) đến đường thẳng : + =1...
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 5: Phương trình đường tròn
Chủ đề 2: Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều