Chứng minh rằng mỗi dãy số (un) sau là một cấp số nhân. Hãy tìm số hạng đầu

Lời giải Bài 2.21 trang 39 SBT Toán 11 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 384 11/09/2023


Giải SBT Toán 11 Bài 7: Cấp số nhân

Bài 2.21 trang 39 SBT Toán 11 Tập 1: Chứng minh rằng mỗi dãy số (un) sau là một cấp số nhân. Hãy tìm số hạng đầu và công bội của nó.

a) un=3.12n;

b) un=2n3n1.

Lời giải:

a) Từ un=3.12n suy ra un+1=3.12n+1=32.12n.

Như vậy un+1un=32.12n3.12n=12 không đổi với mọi n.

Vậy dãy số đã cho là cấp số nhân có số hạng đầu u1 = 32 và công bội q=12.

b) Từ un=2n3n1 suy ra un+1=2n+13n+11=2.2n3.3n1=23.2n3n1.

Như vậy un+1un=23.2n3n12n3n1=23 không đổi với mọi n.

Vậy dãy số đã cho là cấp số nhân có số hạng đầu u1 = 2 và công bội q = 23.

1 384 11/09/2023


Xem thêm các chương trình khác: