Chứng minh các định lí sau: a) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai
Lời giải Bài 38 trang 104 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.
Giải SBT Toán 11 Bài 4: Hai mặt phẳng vuông góc
Bài 38 trang 104 SBT Toán 11 Tập 2: Chứng minh các định lí sau:
a) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.
b) Cho một mặt phẳng và một đường thẳng không vuông góc với mặt phẳng đó. Khi đó tồn tại duy nhất một mặt phẳng chứa đường thẳng đã cho và vuông góc với mặt phẳng đã cho.
Lời giải:
a)
Giả sử có ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q) và (R) ⊥ (P). Ta cần chứng minh (R) ⊥ (Q).
Gọi a = (P) ∩ (R), lấy d ⊂ (R) sao cho a ⊥ d.
Ta có: (R) ⊥ (P), a = (R) ∩ (P), d ⊂ (R) và a ⊥ d, suy ra d ⊥ (P).
Mà (P) // (Q), d ⊂ (R) nên d ⊥ (Q).
Suy ra (Q) ⊥ (R).
b) Xét đường thẳng d không vuông góc với mặt phẳng (P). Ta cần chứng minh: tồn tại duy nhất mặt phẳng (Q) vuông góc với (P) và chứa d.
Chứng minh tính tồn tại mặt phẳng (Q):
· Xét trường hợp d cắt (P) tại A.
Lấy M ∈ d sao cho M ≠ A. Vẽ đường thẳng a đi qua M sao cho a ⊥ (P).
Suy ra d ∩ a = M.
Khi đó hai đường thẳng a và d xác định mặt phẳng (Q) hay mặt phẳng (Q) chứa hai đường thẳng a và d.
Vì a ⊥ (P), a ⊂ (Q) nên ta có (P) ⊥ (Q).
· Xét trường hợp d ⊂ (P) hoặc d // (P).
Lấy M ∈ d. Vẽ đường thẳng a đi qua M sao cho a ⊥ (P).
Suy ra d ∩ a = M.
Khi đó hai đường thẳng a và d xác định mặt phẳng (Q) hay mặt phẳng (Q) chứa hai đường thẳng a và d.
Vì a ⊥ (P), a ⊂ (Q) nên ta có (P) ⊥ (Q).
Chứng minh tính duy nhất mặt phẳng (Q):
Giả sử tồn tại mặt phẳng (Q’) khác (Q) sao cho d ⊂ (Q’) và (P) ⊥ (Q’).
Ta thấy: d = (Q’) ∩ (Q).
Mà (P) ⊥ (Q), (P) ⊥ (Q’) nên suy ra d ⊥ (P).
Mâu thuẫn với giả thiết d không vuông góc với (P).
Như vậy, tồn tại duy nhất mặt phẳng (Q) sao cho d ⊂ (Q) và (P) ⊥ (Q).
Xem thêm lời giải SBT Toán lớp 11 bộ sách Cánh diều hay, chi tiết khác:
Bài 35 trang 103 SBT Toán 11 Tập 2: Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì:...
Bài 38 trang 104 SBT Toán 11 Tập 2: Chứng minh các định lí sau: a) Cho hai mặt phẳng song song....
Bài 42 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có Gọi H là trực tâm tam giác ABC....
Bài 44 trang 104 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình chữ nhật, (SAC) ⊥ (ABCD)....
Xem thêm lời giải SBT Toán lớp 11 bộ sách Cánh diều hay, chi tiết khác:
Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều