Cho P là một điểm nằm trong góc nhọn xOy. Gọi M là điểm sao cho Ox là đường trung trực của đoạn thẳng PM
Lời giải Bài 9.20 trang 58 SBT Toán 7 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải SBT Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 9.20 trang 58 SBT Toán 7 Tập 2:Cho P là một điểm nằm trong góc nhọn xOy. Gọi M là điểm sao cho Ox là đường trung trực của đoạn thẳng PM, gọi N là điểm sao cho Oy là đường trung trực của đoạn thẳng PN. Đường thẳng MN cắt Ox tại R, cắt Oy tại S. Chứng minh tia PO là tia phân giác của góc RPS.
Lời giải:
Tam giác OPM là tam giác cân tại O (vì Ox là đường trung trực của đoạn thẳng PM).
Suy ra (1) và OM = OP.
Lại có tam giác RPM là tam giác cân tại R (vì Ox, hay chính là Rx là đường trung trực của đoạn thẳng PM).
Suy ra (2)
Trừ vế với vế của (1) cho (2) ta có: .
Hay (*)
Tương tự ta có tam giác OPN là tam giác cân tại O (vì Oy là đường trung trực của đoạn thẳng PN).
Suy ra (3) và ON = OP.
Lại có tam giác SPN là tam giác cân tại R (vì Oy, hay chính là Sy là đường trung trực của đoạn thẳng PN).
Suy ra (4)
Trừ vế với vế của (3) cho (4) ta có: .
Hay (**)
Vì OM = ON (= OP) nên tam giác OMN là tam giác cân tại O.
Do đó: (***)
Từ (*), (**), (***) ta suy ra .
Vậy suy ra PO là tia phân giác của góc RPS (đpcm).
Xem thêm lời giải sách bài tập Toán lớp 7 bộ sách Kết nối tri thức hay, chi tiết nhất:
Bài 9.19 trang 58 SBT Toán 7 Tập 2: Cho tam giác ABC vuông. Kẻ đường thẳng vuông góc với cạnh huyền BC của tam giác ABC tại điểm D không thuộc đoạn BC...
Bài 9.20 trang 58 SBT Toán 7 Tập 2: Cho P là một điểm nằm trong góc nhọn xOy. Gọi M là điểm sao cho Ox là đường trung trực của đoạn thẳng PM...
Bài 9.21 trang 58 SBT Toán 7 Tập 2: Gọi H là trực tâm của tam giác nhọn ABC. Khi AH = BC, hãy chứng minh ...
Bài 9.22 trang 58 SBT Toán 7 Tập 2: a) Giả sử đường trung trực d của cạnh BC của tam giác ABC cắt cạnh AC tại một điểm D nằm giữa A và C. Chứng minh AC > AB...
Xem thêm lời giải sách bài tập Toán lớp 7 bộ sách Kết nối tri thức hay, chi tiết nhất:
Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
Bài 36: Hình hộp chữ nhật và hình lập phương
Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác
Xem thêm các chương trình khác:
- Giải sgk Lịch sử 7 – Kết nối tri thức
- Lý thuyết Lịch Sử 7 – Kết nối tri thức
- Giải sbt Lịch sử 7 – Kết nối tri thức
- Giải VTH Lịch sử 7 – Kết nối tri thức
- Soạn văn lớp 7 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Soạn văn lớp 7 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Văn mẫu lớp 7 – Kết nối tri thức
- Giải VTH Ngữ văn lớp 7 – Kết nối tri thức
- Giải sgk Địa Lí 7 – Kết nối tri thức
- Lý thuyết Địa Lí 7 – Kết nối tri thức
- Giải sbt Địa lí 7 – Kết nối tri thức
- Giải VTH Địa lí 7 – Kết nối tri thức
- Giải sgk Tiếng Anh 7 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 7 Global Success - Kết nối tri thức
- Bài tập Tiếng Anh 7 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 7 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 Global success
- Giải sgk Giáo dục công dân 7 – Kết nối tri thức
- Lý thuyết GDCD 7 – Kết nối tri thức
- Giải sbt Giáo dục công dân 7 – Kết nối tri thức
- Giải vth Giáo dục công dân 7 – Kết nối tri thức
- Giải sgk Khoa học tự nhiên 7 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm lớp 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Công nghệ 7 – Kết nối tri thức
- Lý thuyết Công nghệ 7 – Kết nối tri thức
- Giải sbt Công nghệ 7 – Kết nối tri thức
- Giải VTH Công nghệ 7 – KNTT
- Giải sgk Tin học 7 – Kết nối tri thức
- Lý thuyết Tin học 7 – Kết nối tri thức
- Giải sbt Tin học 7 – Kết nối tri thức
- Giải VTH Tin học 7 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 7 – Kết nối tri thức
- Giải sgk Âm nhạc 7 – Kết nối tri thức