Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’

Lời giải Bài 4.62 trang 74 SBT Toán 11 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 294 11/09/2023


Giải SBT Toán 11 Bài tập cuối chương 4 trang 72

Bài 4.62 trang 74 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC’, DD’. Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng và MNPQ là hình bình hành.

Lời giải:

Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 4 trang 72 (ảnh 10)

Vì M, N lần lượt là trung điểm của hai cạnh AA’, BB’ của hình bình hành ABB’A’ nên MN//AB, mà AB nằm trong mặt phẳng ABCD nên MN//(ABCD)

Tương tự ta có: NP//(ABCD)

Do đó, (MNP)//(ABCD)

Tương tự ta có: (NPQ)//(ABCD)

Qua N có hai mặt phẳng (MNP) và (NPQ) cùng song song với mặt phẳng (ABCD) nên hai mặt phẳng (MNP) và (NPQ) trùng nhau, tức là bốn điểm M, N, P, Q đồng phẳng.

Chứng minh được: MN//PQ và MN=PQ(=12AB) nên tứ giác MNPQ là hình bình hành.

1 294 11/09/2023


Xem thêm các chương trình khác: