Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng có tâm lần lượt là O và O'

Lời giải Bài 2 trang 121 SBT Toán 11 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 514 20/10/2023


Giải SBT Toán 11 Bài 3: Đường thẳng và mặt phẳng song song

Bài 2 trang 121 SBT Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng có tâm lần lượt là O và O’.

a) Chứng minh OO’ song song với các mặt phẳng (ADF) và (BCE).

b) Gọi M, N lần lượt là hai điểm thuộc hai cạnh AF, AD sao cho AM = 13AF, AN = 13AD Chứng minh MN // (DCEF).

Lời giải:

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng

a) Do O, O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O là trung điểm của BD, AC và O’ là trung điểm của BF, AE.

Xét trong ∆BDF có: O, O’ lần lượt là trung điểm của BD, BF nên OO’ là đường trung bình của ∆BDF, suy ra OO’ // DF (1)

Tương tự, trong ∆ACE ta cũng có OO’ // CE (2)

Từ (1) và (2) suy ra OO’ // DF // CE, mà DF ⊂ (ADF), CE ⊂ (BCE)

Suy ra OO’ song song với các mặt phẳng (ADF) và (BCE).

b) Do AM = 13AF, AN = 13AD nên AMAF=ANAD=13

Xét ∆ADF có AMAF=ANAD suy ra MN // DF (định lý Thalès đảo)

Mà DF ⊂ (DCEF), suy ra MN // (DCEF).

1 514 20/10/2023


Xem thêm các chương trình khác: