a) Cho P là một điểm bên trong tam giác ABC. Chứng minh rằng: AB + AC > PB + PC
Lời giải Bài 9.13 trang 52 SBT Toán 7 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải SBT Toán 7 Kết nối tri thức Bài 33: Quan hệ giữa ba cạnh trong một tam giác
Bài 9.13 trang 52 SBT Toán 7 Tập 2:
a) Cho P là một điểm bên trong tam giác ABC. Chứng minh rằng:
AB + AC > PB + PC.
b) Cho M là một điểm bên trong tam giác ABC. Chứng minh rằng:
Lời giải:
a)
Lấy N là giao điểm của đường thẳng AC và BP.
Ta có: AB + AC = AB + (AN + NC) = (AB + AN) + NC (1)
Áp dụng bất đẳng thức tam giác vào tam giác ABN nên suy ra: AB + AN > BN (2)
Từ (1) và (2) suy ra:
AB + AC > BN + NC = (BP + NP) + NC
= PB + (NP + NC) (3)
Áp dụng bất đẳng thức tam giác vào tam giác CPN nên suy ra:
NP + NC > PC (4)
Từ (3) và (4) suy ra: AB + AC > PB + PC (đpcm).
b)
Áp dụng bất đẳng thức tam giác vào tam giác MAB ta có:
MA + MB > AB (5)
Tương tự với các tam giác MBC và MAC ta lần lượt suy ra được:
MB + MC > BC và MA + MC > AC (6).
Từ (5) và (6) ta suy ra được:
(MA + MB) + (MB + MC) + (MA + MC) > AB + BC + AC
Hay 2(MA + MB + MC) > AB + BC + AC
Suy ra
Mặt khác chứng minh tương tự theo a) ta có:
AB + AC > MB + MC; AC + BC > MA + MB; BC + BA > MC + MA.
Từ đó ta suy ra được:
(MA + MB) + (MB + MC) + (MA + MC) < (AC + AB) + (AB + AC) + (BC + BA)
Hay 2(MA + MB + MC) < 2(AB + BC + CA)
Suy ra MA + MB + MC < AB + BC + CA (**)
Từ (*) và (**) ta suy ra:
(đpcm).
Xem thêm lời giải sách bài tập Toán lớp 7 bộ sách Kết nối tri thức hay, chi tiết nhất:
Bài 9.10 trang 52 SBT Toán 7 Tập 2: Cho tam giác có độ dài cạnh lớn nhất bằng 4 cm. Hãy giải thích tại sao chu vi tam giác đó bé hơn 12 cm và lớn hơn 8 cm...
Bài 9.11 trang 52 SBT Toán 7 Tập 2: Tam giác ABC có AB = 2 cm, BC = 5 cm, AC = b (cm) với b là một số nguyên. Hỏi b có thể bằng bao nhiêu...
Bài 9.12 trang 52 SBT Toán 7 Tập 2: Tam giác ABC có AB = 2 cm, BC = 3 cm. Đặt CA = b (cm). a) Chứng minh rằng 1 < b < 5...
Bài 9.13 trang 52 SBT Toán 7 Tập 2: a) Cho P là một điểm bên trong tam giác ABC. Chứng minh rằng: AB + AC > PB + PC...
Xem thêm lời giải sách bài tập Toán lớp 7 bộ sách Kết nối tri thức hay, chi tiết nhất:
Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 36: Hình hộp chữ nhật và hình lập phương
Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác
Xem thêm các chương trình khác:
- Giải sgk Lịch sử 7 – Kết nối tri thức
- Lý thuyết Lịch Sử 7 – Kết nối tri thức
- Giải sbt Lịch sử 7 – Kết nối tri thức
- Giải VTH Lịch sử 7 – Kết nối tri thức
- Soạn văn lớp 7 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Soạn văn lớp 7 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Văn mẫu lớp 7 – Kết nối tri thức
- Giải VTH Ngữ văn lớp 7 – Kết nối tri thức
- Giải sgk Địa Lí 7 – Kết nối tri thức
- Lý thuyết Địa Lí 7 – Kết nối tri thức
- Giải sbt Địa lí 7 – Kết nối tri thức
- Giải VTH Địa lí 7 – Kết nối tri thức
- Giải sgk Tiếng Anh 7 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 7 Global Success - Kết nối tri thức
- Bài tập Tiếng Anh 7 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 7 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 Global success
- Giải sgk Giáo dục công dân 7 – Kết nối tri thức
- Lý thuyết GDCD 7 – Kết nối tri thức
- Giải sbt Giáo dục công dân 7 – Kết nối tri thức
- Giải vth Giáo dục công dân 7 – Kết nối tri thức
- Giải sgk Khoa học tự nhiên 7 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm lớp 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Công nghệ 7 – Kết nối tri thức
- Lý thuyết Công nghệ 7 – Kết nối tri thức
- Giải sbt Công nghệ 7 – Kết nối tri thức
- Giải VTH Công nghệ 7 – KNTT
- Giải sgk Tin học 7 – Kết nối tri thức
- Lý thuyết Tin học 7 – Kết nối tri thức
- Giải sbt Tin học 7 – Kết nối tri thức
- Giải VTH Tin học 7 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 7 – Kết nối tri thức
- Giải sgk Âm nhạc 7 – Kết nối tri thức