TOP 40 câu Trắc nghiệm Ôn tập chương 2 (có đáp án 2024) – Toán 9
Bộ 40 bài tập trắc nghiệm Toán lớp 9 Bài Ôn tập chương 2 có đáp án đầy đủ các mức độ giúp các em ôn trắc nghiệm Toán 9 Bài Ôn tập chương 2.
Trắc nghiệm Toán lớp 9 Ôn tập chương 2
Câu 1: Đường tròn là hình:
A. Không có trục đối xứng
B. Có một trục đối xứng
C. Có hai trục đối xứng
C. Có vô số trục đối xứng
Đáp án: D
Giải thích:
Đường tròn có trục đối xứng là đường thẳng đi qua tâm của nó. Do có vô số đường kính nên đường tròn có vô số trục đối xứng
Câu 2: Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax và By (Ax và By và nửa đường tròn cùng thuộc về một nửa mặt phẳng bờ là AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax và By theo thứ tự tại C và D. Lấy I là trung điểm của CD. Chọn câu sai:
A. Đường tròn có đường kính CD và tiếp xúc với AB
B. Đường tròn có đường kính CD cắt AB
C. IO AB
D. IO =
Đáp án: B
Giải thích:
Vì I là trung điểm CD
Nên I là tâm của đường tròn đường kính CD
Theo tính chất hai tiếp tuyến cắt nhau:
AC = CM và BD = DM
Xét tứ giác ABDC có:
AC // BD ABDC là hình thang
Suy ra IO là đường trung bình của hình thang ABDC
IO // AC // BD mà ACABIOAB (1)
IO = (2)
Từ (1) và (2) suy ra đường tròn đường kính CD tiếp xúc với AB
Vậy A, C, D đúng, B sai
Câu 3: Đường tròn tâm O bán kính 5cm là tập hợp các điểm:
A. Có khoảng cách đến điểm O nhỏ hơn bằng 5cm
B. Có khoảng cách đến O bằng 5cm
C. Cách đều O một khoảng là 5cm
D. Cả B và C đều đúng
Đáp án: D
Giải thích:
Tập hợp các điểm cách O một khoảng 5cm được gọi là đường tròn tâm O bán kính 5cm nên B, C đúng
Tập hợp các điểm cách O một khoảng nhỏ hơn hoặc bằng 5cm được gọi là hình tròn tâm O bán kính 5cm nên A sai
Câu 4: Hai tiếp tuyến tại A và B của đường tròn (O; R) cắt nhau tại M. Nếu MA = R thì góc bằng:
A. 120o
B. 90o
C. 60o
D. 45o
Đáp án: A
Giải thích:
Có AM là tiếp tuyến của đường tròn (O)
nên AM vuông góc với OA
Xét tam giác AOM vuông tại A
nên có tan =
= 60o
Mà hai tiếp tuyến AM và BM cắt nhau tại M nên ta có OM là phân giác của
Vậy = 2 = 2.60o = 120o
Câu 5: Cho (O; R) và đường thẳng a, gọi d là khoảng cách từ O đến a. Phát biểu nào sau đây là sai:
A. Nếu d < R, thì đường thẳng a cắt đường tròn (O)
B. Nếu d > R, thì đường thẳng a không cắt đường tròn (O)
C. Nếu d = R thì đường thẳng a đi qua tâm O của đường tròn
D. Nếu d = R thì đường thẳng a tiếp xúc với đường tròn (O)
Đáp án: C
Giải thích:
Nếu d = R thì đường thẳng a tiếp xúc với đường tròn (O) nên C sai, D đúng
Câu 6: Chọn câu sai:
A. Hai đường tròn cắt nhau thì đường nối tâm là trung trực của dây cung
B. Qua ba điểm không thẳng hàng, ta luôn xác định được một đường tròn
C. Hai đường tròn tiếp xúc nhau, điểm tiếp xúc nằm trên đường nối tâm
D. Tâm của đường tròn nội tiếp tam giác là giao điểm của ba đường trung trực
Đáp án: D
Giải thích:
Hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây cung (đúng)
Qua ba điểm không thẳng hàng, ta luôn xác định được một đường tròn (đường tròn ngoại tiếp tam giác)
Hai đường tròn tiếp xúc nhau, điểm tiếp xúc nằm trên đường nối tâm (đúng)
Tâm của đường tròn nội tiếp tam giác là giao điểm của ba đường phân giác nên D sai
Câu 7: Cho hình vuông nội tiếp đường tròn (O; R). Chu vi của hình vuông là:
A. 2R
B. 3R
C. 4R
D. 6R
Đáp án: C
Giải thích:
Hình vuông ABCD nội tiếp đường tròn tâm O
Khi đó đường chéo BD là đường kính của (O)
Suy ra BD = 2R
Xét tam giác BDC vuông cân tại C,
theo định lý Pytago ta có:
BC2 + CD2 = BD2
2BC2 = 4R2 BC = R
Chu vi hình vuông ABCD là 4R
*Chú ý:
Câu 8: Trong hình vẽ bên cho OCAB, AB = 12cm, OA = 10cm.
Độ dài AC là:
A. 8cm
B. 2cm
C. 4cm
D. 2cm
Đáp án: B
Giải thích:
Vì OC vuông góc với AB nên D là trung điểm của AB (mối quan hệ giữa đường kính và dây)
AD = = 6cm
Xét tam giác AOD vuông tại D nên
OD2 = OA2 – AD2 = 102 – 62 = 64
OD = 8cm
Có OD + DC = OC nên
DC = OC – OD = 10 – 8 = 2cm
Xét tam giác ADC vuông tại D nên
AC2 = AD2 + DC2 = 62 + 22 = 40
Vậy AC = 2cm
Câu 9: Cho hai đường tròn (O; 4cm) và (O’; 3cm) biết OO’ = 5cm. Hai đường tròn cắt nhau tại A và B. Độ dài AB là:
A. 2,4cm
B. 4,8cm
C. cm
D. 5cm
Đáp án: B
Giải thích:
Xét tam giác OAO’ có
OA2 + O’A2 = OO’2 (vì 42 + 32 = 52) nên tam giác OAO’ vuông tại A
Xét tam giác OAO’ có AH là đường cao nên
AH.OO’ = OA.OA’
AH =
Mà AB = 2AH nên AB = = 4,8cm
Câu 10: Cho tam giác ABC cân tại đỉnh A, nội tiếp đường tròn (O). Phát biểu nào sau đây là đúng?
A. Tiếp tuyến tại A với đường tròn (O) là đường thẳng qua A và vuông góc với AB
B. Tiếp tuyến tại A của đường tròn (O) là đường thẳng qua A và vuông góc với AC
C. Tiếp tuyến tại A với đường tròn (O) là đường thẳng qua A và song song với BC
D. Cả 3 câu A, B, C đều sai
Đáp án: C
Giải thích:
Vì tam giác ABC cân tại A nên tâm đường tròn ngoại tiếp nằm trên đường cao của tam giác đi qua A, hay OA vuông góc với BC mà tiếp tuyến của (O) tại A thì cũng phải vuông góc với OA (tính chất tiếp tuyến của đường tròn).
Vì vậy tiếp tuyến tại A của đường tròn sẽ song song với BC
Câu 11: Cho hai đường tròn (O; 5) và (O’; 5) cắt nhau tại A và B. Biết OO’ = 8. Độ dài dây cung AB là:
A. 6cm
B. 7cm
C. 5cm
D. 8cm
Đáp án: A
Giải thích:
Ta có OA = O’A = 5cm nên tam giác AOO’ cân tại A.
Mà AH vuông góc với OO’ nên H là trung điểm của OO’.
Suy ra OH = 4cm
Xét tam giác AOH vuông tại H nên suy ra
AH2 = OA2 – OH2 = 52 – 42 = 9 = 32
Vậy AH = 3cm
Mà AB = 2AH (mối quan hệ giữa đường nối tâm và dây cung)
Vậy AB = 6cm
Câu 12: Phát biểu nào sau đây là sai:
A. Đường kính đi qua trung điểm của dây cung thì vuông góc với dây ấy
B. Đường kính vuông góc với dây cung thì đi qua trung điểm của dây ấy
C. Đường kính đi qua trung điểm của một dây (dây không đi qua tâm) thì vuông góc với dây ấy
D. Đường kính vuông góc với một dây thì hai đầu mút của dây ấy đối xứng qua đường kính này
Đáp án: A
Giải thích:
Đường kính đi qua trung điểm của một dây chưa chắc đã vuông góc với dây ấy (trường hợp dây là đường kính của đường tròn)
Câu 13: Cho đường tròn (O; 25cm) và dây AB bằng 40cm. Khi đó khoảng cách từ tâm O đến dây AB là:
A. 15cm
B. 7cm
C. 20cm
D. 24cm
Đáp án: A
Giải thích:
Từ O kẻ OH vuông góc với AB
Vậy H là trung điểm của AB (mối quan hệ giữa đường kính và dây)
suy ra AH = = 20cm
Xét tam giác OAH vuông tại H nên theo định lý Pytago ta có:
OH2 = OA2 – AH2
= 252 – 202 = 225 = 152
Vậy OH = 15cm
Câu 14: Cho đường tròn (O; 3cm), lấy điểm A sao cho OA = 6cm. Từ A vẽ tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Chu vi tam giác ABC là:
A. 9cm
B. 9cm
C. 9 cm
D. Kết quả khác
Đáp án: B
Giải thích:
Gọi D là giao điểm của BC và OA
Có OC AC (tính chất tiếp tuyến của đường tròn)
Xét OAC vuông tại C, ta có:
OC2 + CA2 = OA2 (Pytago)
AC2 = OA2 − OC2 = 62 − 32
= 36 – 9 = 27
AC = 3 cm
Mà AC = AB (tính chất hai tiếp tuyến cắt nhau)
nên AB = 3 cm
Vì AC = AB; OB = OC
nên OA là đường trung trực của BC
hay OA BC tại D và D là trung điểm của CB
Xét tam giác vuông OCA có CD là đường cao nên:
CD =
BC = 2CD = 3 cm
Vậy chu vi tam giác ABC là:
3+ 3+ 3 = 9cm
Câu 15: Cho tam giác ABC có AB = 5, AC = 12, BC = 13. Khi đó:
A. AB là tiếp tuyến của đường tròn (C; 5)
B. AC là tiếp tuyến của đường tròn (B; 5)
C. AB là tiếp tuyến của đường tròn (B; 12)
D. AC là tiếp tuyến của đường tròn (C; 13)
Đáp án: B
Giải thích:
Xét ABC có:
AB2 + AC2 = 52 + 122
= 169 = 132 = BC2
Áp dụng định lý Pytago đảo ta có ABC vuông tại A.
Do đó AB AC
AB là tiếp tuyến của đường tròn (C; 12)
AC là tiếp tuyến của đường tròn (B; 5)
Câu 16: Hai tiếp tuyến tại hai điểm B, C của một đường tròn (O) cắt nhau tại A tạo thành = 50o. Số đo của góc bằng:
A. 30o
B. 40o
C. 130o
D. 310o
Đáp án: C
Giải thích:
Vì hai tiếp tuyến của đường tròn (O) cắt nhau tại A
nên = 90o
= 360o – 180o = 180o
Mà = 50o
nên = 180o – 50o = 130o
Câu 17: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B(O) và C(O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC tại I. Tính độ dài BC biết OA = 9cm, O’A = 4cm
A. 12cm
B. 18cm
C. 10cm
D. 6cm
Đáp án: A
Giải thích:
Ta có IO là tia phân giác của (tính chất hai tiếp tuyến cắt nhau)
IO’ là tia phân giác của (tính chất hai tiếp tuyến cắt nhau)
Mà = 180o = 90o
Tam giác OIO’ vuông tại I có IA là đường cao (vì IA là tiếp tuyến chung của hai đường tròn) nên theo hệ thức lượng trong tam giác vuông ta có:
IA2 = AO.AO’ = 9.4 = 36 IA = 6cm
IA = IB = IC = 6cm (tính chất hai tiếp tuyến cắt nhau)
Vậy BC = 2IA = 2.6 = 12 (cm)
Câu 18: Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax và By (Ax và By và nửa đường tròn cùng thuộc về một nửa mặt phẳng bờ là AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax và By theo thứ tự tại C và D. Lấy I là trung điểm của CD. Hình thang ABDC có chu vi nhỏ nhất là:
A. AB
B. 2AB
C. 3AB
D. 4AB
Đáp án: C
Giải thích:
Theo tính chất hai tiếp tuyến cắt nhau:
AC = CN và BD = DM
Chu vi hình thang ABDC là:
PABDC = AC + AB + BD + CD
= CM + AB + DM + CD
= AB + 2CD
PABDC min khi CDmin
CD = AB CD // AB
Mà OM CD OMAB
PABDC min = AB + 2AB = 3AB
Vậy chu vi nhỏ nhất của hình thang ABDC là
3AB khi OM AB
Câu 19: Số tâm đối xứng của đường tròn là:
A. 1
B. 2
C. 3
D. 4
Đáp án: A
Giải thích:
Đường tròn là hình có tâm đối xứng. Tâm đường tròn là tâm đối xứng của đường tròn đó.
Nên đường tròn có một tâm đối xứng duy nhất là tâm của đường tròn
Câu 20: Khẳng định nào sau đây là đúng khi nói về trục đối xứng của đường tròn
A. Đường tròn không có trục đối xứng
B. Đường tròn có duy nhất một trục đối xứng là đường kính
C. Đường tròn có hai trục đối xứng là hai đường kính vuông góc với nhau
D. Đường tròn có vô số trục đối xứng là đường kính
Đáp án: D
Câu 21: Tâm của đường tròn ngoại tiếp tam giác là:
A. Giao của ba đường phân giác
B. Giao của ba đường trung trực
C. Giao của ba đường cao
D. Giao của ba đường trung tuyến
Đáp án: B
Giải thích: Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó
Câu 22: Cho đường tròn (O; R) và điểm M bất kì, biết rằng OM = R . Chọn khẳng định đúng?
A. Điểm M nằm ngoài đường tròn
B. Điểm M nằm trên đường tròn
C.Điểm M nằm trong đường tròn
D. Điểm M không thuộc đường tròn
Đáp án: B
Câu 23: Tâm của đường tròn ngoại tiếp tam giác vuông là
A. Trung điểm cạnh huyền
B. Trung điểm cạnh góc vuông lớn hơn
C. Giao ba đường cao
D. Giao ba đường trung tuyến
Đáp án: A
Câu 24: Xác định tâm và bán kính của đường tròn đi qua cả bốn đỉnh của hình vuông ABCD cạnh a
A. Tâm là giao điểm A và bán kính R =
B. Tâm là giao điểm hai đường chéo và bán kính R =
C. Tâm là giao điểm hai đường chéo và bán kính R =
D. Tâm là điểm B và bán kính là R =
Đáp án: C
Giải thích:
Gọi O là giao hai đường chéo của hình vuông ABCD.
Khi đó theo tính chất của hình vuông ta có OA = OB = OC = OD nên O là tâm đường tròn ngoại tiếp hình vuông ABCD, bán kính R = OA = AC/2
Xét tam giác vuông tại ta có:
Vậy tâm đường tròn ngoại tiếp hình vuông ABCD cạnh a là giao điểm hai đường chéo, bán kính là R =
Câu 25: Cho tam giác ABC có các đường cao BD, CE. Biết rằng bốn điểm B, E, D, C nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó
A. Tâm là trọng tâm tam giác ABC và bán kính R = 2/3 AI với I là trung điểm của
B. Tâm là trung điểm AB và bán kính R = AB/2
C.Tâm là giao điểm của BD và EC, bán kính là R = AB/2
D. Tâm là trung điểm BC và bán kính là R = BC/2
Đáp án: D
Giải thích:
Câu 26: Trên mặt phẳng tọa độ Oxy, xác định vị trí tương đối của điểm A(-1; -1) và đường tròn tâm là gốc tọa độ O, bán kính R = 2
A. Điểm A nằm ngoài đường tròn
B. Điểm A nằm trên đường tròn
C. Điểm A nằm trong đường tròn
D. Không kết luận được
Đáp án: C
Giải thích:
Câu 27: Cho tam giác ABC vuông tại A, có AB = 15cm; AC = 20cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC
A. R = 25
B. R =
C. R = 15
D. R = 20
Đáp án: B
Giải thích:
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền BC, bán kính là R =
Theo định lý Pytago ta có: nên bán kính R =
Câu 28: Cho hình chữ nhật ABCD có AB = 12cm, BC = 5cm. Tính bán kính đường tròn đi qua bốn đỉnh A, B, C, D
A. R = 7,5cm
B. R = 13cm
C. R = 6cm
D. R = 6,5cm
Đáp án: D
Giải thích:
Gọi I là giao hai đường chéo, ta có IA = IB = IC = ID (vì BD = AC và I là trung điểm mỗi đường)
Nếu bốn điểm A, B, C, D cùng thuộc đường tròn tâm I bán kính R =
Theo định lý Pytago trong tam giác vuông ABC
Ta có:
Nên R = = 6,5cm
Các câu hỏi trắc nghiệm Toán lớp 9 có đáp án, chọn lọc khác:
40 câu hỏi Trắc nghiệm Căn bậc hai (có đáp án 2022) – Toán 9
40 câu hỏi Trắc nghiệm Căn thức bậc hai và hằng đẳng thức (có đáp án 2022) – Toán 9
40 câu hỏi Trắc nghiệm Liên hệ giữa phép nhân và phép khai phương (có đáp án 2022) – Toán 9
40 câu hỏi Trắc nghiệm Liên hệ giữa phép chia và phép khai phương (có đáp án 2022) – Toán 9
40 câu hỏi Trắc nghiệm Biến đổi đơn giản biểu thức chứa căn thức bậc hai (có đáp án 2022) –Toán 9
Xem thêm các chương trình khác:
- Trắc nghiệm Sinh học lớp 7 có đáp án
- Trắc nghiệm Toán lớp 7 có đáp án
- Trắc nghiệm Ngữ văn lớp 7 có đáp án
- Trắc nghiệm Sinh học 8 có đáp án
- Trắc nghiệm Toán lớp 8 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Ngữ văn 8 có đáp án
- Trắc nghiệm Hóa học lớp 8 có đáp án
- Trắc nghiệm Địa Lí lớp 8 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Tiếng Anh lớp 8 có đáp án
- Trắc nghiệm GDCD lớp 8 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Lịch sử lớp 8 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Vật Lí lớp 8 có đáp án
- Trắc nghiệm Công nghệ lớp 8 có đáp án
- Trắc nghiệm Tin học lớp 8 có đáp án
- Trắc nghiệm Sinh học lớp 10 có đáp án
- Trắc nghiệm Toán lớp 10 có đáp án
- Trắc nghiệm Hóa học lớp 10 có đáp án
- Trắc nghiệm Ngữ văn lớp 10 có đáp án
- Trắc nghiệm Vật Lí lớp 10 có đáp án
- Trắc nghiệm Tiếng Anh lớp 10 có đáp án
- Trắc nghiệm Sinh học lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Toán lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Hóa học lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Ngữ văn lớp 11 có đáp án
- Trắc nghiệm Tiếng Anh lớp 11 có đáp án
- Trắc nghiệm Vật Lí lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Địa lí lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm GDCD lớp 11 có đáp án
- Trắc nghiệm Lịch sử lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Công nghệ lớp 11 có đáp án
- Trắc nghiệm Giáo dục quốc phòng - an ninh lớp 11 có đáp án
- Trắc nghiệm Tin học lớp 11 có đáp án
- Trắc nghiệm Toán lớp 12 có đáp án
- Trắc nghiệm Sinh học lớp 12 có đáp án
- Trắc nghiệm Hóa học lớp 12 có đáp án
- Trắc nghiệm Ngữ văn lớp 12 có đáp án
- Trắc nghiệm Tiếng Anh lớp 12 có đáp án
- Trắc nghiệm Địa lí lớp 12 có đáp án
- Trắc nghiệm Vật Lí lớp 12 có đáp án
- Trắc nghiệm Công nghệ lớp 12 có đáp án
- Trắc nghiệm Giáo dục công dân lớp 12 có đáp án
- Trắc nghiệm Lịch sử lớp 12 có đáp án
- Trắc nghiệm Giáo dục quốc phòng - an ninh lớp 12 có đáp án