TOP 40 câu Trắc nghiệm Giải hệ phương trình bằng phương cách lập hệ phương trình (Tiếp theo) (có đáp án 2024) – Toán 9

Bộ 40 bài tập trắc nghiệm Toán lớp 9 Bài 6: Giải hệ phương trình bằng phương cách lập hệ phương trình (Tiếp theo) có đáp án đầy đủ các mức độ giúp các em ôn trắc nghiệm Toán 9 Bài 6.

1 1,036 25/12/2023
Tải về


Trắc nghiệm Toán 9 Giải hệ phương trình bằng phương cách lập hệ phương trình (Tiếp theo)

Bài giảng Trắc nghiệm Toán 9 Giải hệ phương trình bằng phương cách lập hệ phương trình (Tiếp theo)

Câu 1: Một mảnh đất hình chữ nhật có nửa chu vi bằng 34 m. Đường chéo hình chữ nhật dài 26 m. Tính chiều dài mảnh đất hình chữ nhật.

A. 24m

B. 12m

C. 18m

D. 20m

Đáp án: A

Giải thích:

Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y

(34 > x > y > 0; m)

Vì mảnh đất hình chữ nhật có nửa chu vi bằng 37m nên ta có x + y = 37

Đường chéo hình chữ nhật dài 26m

nên ta có phương trình: x2 + y2 = 262

Suy ra hệ phương trình:

x+y=34x2+y2=676y=37xx2+37x2=676   1

Giải phương trình (1) ta được:

2x2 – 68x + 480 = 0

x2 – 34x + 240 = 0

x (x – 10) – 24 (x – 10) = 0

(x – 10) (x – 24) = 0

x=10y=24Lx=24y=10N

Vậy chiều dài mảnh đất ban đầu là 24m

Câu 2: Hai xí nghiệp theo kế hoạch phải làm tổng cộng 360 dụng cụ. Trên thực tếm xí nghiệp 1 vượt mức 12%, xí nghiệp 2 vượt mức 10%, do đó cả hai xí nghiệp làm tổng cộng 400 dụng cụ. Tính số dụng cụ xí nghiệp 2 phải làm theo kế hoạch.

A. 160 dụng cụ

B. 200 dụng cụ

C. 120 dụng cụ

D. 240 dụng cụ

Đáp án: A

Giải thích:

Gọi số dụng cụ cần làm của xí nghiệp 1 và xí nghiệp 2 lần lượt là x, y

(x, y* x, y < 360, dụng cụ)

Số dụng cụ xí nghiệp 1 và xí nghiệp 2 làm được khi vượt mức lần lượt là 112%x và 110%y (dụng cụ)

Ta có hệ phương trình

x+y=360112%x+110%y=400x=200y=160

Vậy xí nghiệp 1 phải làm 200 dụng cụ, xí nghiệp 2 phải làm 160 dụng cụ.

Câu 3: Một khách du lịch đi trên ô tô 4 giờ sau đó đi tiếp bằng tàu hỏa trong 7 giờ được quãng đường dài 640 km. Hỏi vận tốc của tàu hỏa biết mỗi giờ tàu hỏa đi nhanh hơn ô tô 5 km.

A. 40 km/h

B. 50 km/h

C. 60 km/h

D. 65 km/h

Đáp án: C

Giải thích:

Gọi vận tốc của tàu hỏa và ô tô lần lượt là x, y (km/h, x > y > 0; x > 5)

Vì khách du lịch đi ô tô 4 giờ sau đó đi tiếp bằng tàu hỏa trong 7 giờ được quãng đường dài 640 km

nên ta có phương trình 7x + 4y = 640

Và mỗi giờ tàu hỏa đi nhanh hơn ô tô 5 km

nên ta có phương trình x – y = 5

Suy ra hệ phương trình

xy=57x+4y=640x=y+57y+5+4y=640y=55x=60(tm)

Vậy vận tốc tàu hỏa là 60km/h

Câu 4: Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số lớn hơn số đã cho là 18. Tổng của số đã cho và số mới tạo thành bằng 66. Tổng các chữ số của số đó là?

A. 9

B. 8

C. 7

D. 6

Đáp án: D

Giải thích:

Gọi số cần tìm là ab¯  ,  a*,b*;  a,b9

Đổi chỗ hai chữ số của nó thì ta được một số mới là

Ta có hệ phương trình:

ba¯ab¯=18ba¯+ab¯=662ab¯=48ba¯+ab¯=66ab¯=24ba¯=42(tm)

Vậy số cần tìm là 24 nên tổng các chữ số là 2 + 4 = 6

Câu 5: Một khách du lịch đi trên ô tô 5 giờ sau đó đi tiếp bằng xe máy trong 3 giờ được quãng đường dài 330 km. Hỏi vận tốc của ô tô, biết rằng mỗi giờ xe máy đi chậm hơn ô tô 10 km.

A. 40 km/h

B. 50 km/h

C. 35 km/h

D. 45 km/h

Đáp án: D

Giải thích:

Gọi vận tốc của ô tô và xe máy lần lượt là x, y (km/h, x > y > 0; x > 10)

Vì khách du lịch đi trên ô tô 5 giờ, sau đó đi tiếp bằng xe máy trong 3 giờ được quãng đường dài 330 km nên ta có phương trình 5x + 3y = 330

Và mỗi giờ ô tô đi nhanh hơn xe máy 10 km nên ta có phương trình x – y = 10

Suy ra hệ phương trình:

xy=105x+3y=330x=y+105y+10+3y=3308y=280x=y+10y=35x=45(tm)

Vậy vận tốc ô tô là 45 km/h

Câu 6: Cho một số có hai chữ số. Chữ số hàng chục lớn hơn chữ số hàng đơn vị là 5. Nếu đổi chỗ hai chữ số cho nhau ta được một số bằng 38 số ban đầu. Tìm tích các chữ số của số ban đầu.

A. 12

B. 16

C. 14

D. 6

Đáp án: C

Giải thích:

Gọi số cần tìm là ab¯  ,  a*,b*;  a,b9

Đổi chỗ hai chữ số của nó thì ta được một số mới là ba¯

Ta có hệ phương trình:

ab=5ba¯=38ab¯a=b+5b.10+a=38a.10+ba=b+580b=8b+5=30b+5+3ba=b+566b=110b=2a=7(tm)

Vậy số cần tìm là 72 nên tích các chữ số là 2.7 = 14

Câu 7: Hai vòi nước cùng chảy vào một bể thì sau 4 giờ 48 phút bể đầy. Nếu vòi I chảy riêng trong 4 giờ, vòi II chảy riêng trong 3 giờ thì cả hai vòi chảy được bể. Tính thời gian vòi I chảy 1 mình đầy bể.

A. 6 giờ

B. 8 giờ

C. 10 giờ

D. 12 giờ

Đáp án: B

Giải thích:

Gọi thời gian vòi I, vòi II chảy một mình đầy bể lần lượt là x, y x,y>245

(đơn vị: giờ)

Mỗi giờ vòi I chảy được 1x (bể),

vòi II chảy được 1y bể

nên cả hai vòi chảy được 1x+1y bể

Vì hai vòi ngước cùng chảy vào một bể thì sau 4 giờ 48 phút =245h bể đầy

nên ta có phương trình: 1x+1y=525

Nếu vòi I chảy riêng trong 4 giờ,

vòi II chảy riêng trong 3 giờ

thì cả hai vòi chảy được 34 bể

nên ta có phương trình 4x+3y=34

Suy ra hệ phương trình

4x+34=341x+1y=5244x+34=343x+3y=581x=181y=112x=8y=12(tm)

Vậy thời gian vòi I một mình đầy bể là 8h.

Câu 8: Năm ngoái, cả 2 cánh đồng thu hoạch được 500 tấn thóc. Năm nay, do áp dụng khoa học kĩ thuật nên lượng lúa thu được trên cánh đồng thứ nhất tăng lên 30% so với năm ngoái, trên cánh đồng thứ hai tăng 20%. Do đó tổng cộng cả hai cánh đồng thu được 630 tấn thóc. Hỏi trên mỗi cánh đồng năm nay thu được bao nhiêu tấn thóc?

A. 400 tấn và 230 tấn

B. 390 tấn và 240 tấn

C. 380 tấn và 250 tấn

D. Tất cả đều sai

Đáp án: B

Giải thích:

Gọi số thóc năm ngoái thu được của cánh đồng thứ nhất là (x) (tấn) (x > 0)

Gọi số thóc năm ngoái thu được của cánh đồng thứ hai là y (tấn) (y > 0)

Năm ngoái, cả 2 cánh đồng thu hoạch được 500 tấn thóc nên ta có phương trình:

x + y = 500 (1)

Năm nay, lượng lúa thu được trên cánh đồng thứ nhất tăng lên 30% so với năm ngoái, trên cánh đồng thứ hai tăng 20% nên ta có phương trình:

x+30100x+y+20100y=630130100x+120100y=630 (2)

Từ (1) và (2) ta có hệ phương trình:

x+y=500130100x+120100y=630120100x+120100y=600130100x+120100y=63010100x=30x+y=500x=300x+y=500x=300y=200(tm)

Vậy lượng lúa thu hoạch được năm nay của

cánh đồng thứ nhất là 300.1,3 = 390 (tấn);

lượng lúa thu được năm nay của

cánh đồng thứ hai là 200.1,2 = 240 tấn.

Câu 9: Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số mới lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành 99. Tổng các chữ số của số đó là?

A. 9

B. 8

C. 7

D. 6

Đáp án: A

Giải thích:

Gọi số cần tìm là ab¯  ,  a*,b*;  a,b9

Đổi chỗ hai chữ số của nó thì ta được một số mới là ba¯

Ta có hệ phương trình:

ba¯ab¯=63ba¯+ab¯=992ab¯=36ba¯+ab¯=99ab¯=18ba¯=81(tm)

Vậy số cần tìm là 18 nên tổng các chữ số là 1 + 8 = 9

Câu 10: Hai người đi xe đạp xuất phát đồng thời từ hai thành phố cách nhau 38 km. Họ đi ngược chiều và gặp nhau sau 2 giờ. Hỏi vận tốc của người thứ nhất, biết rằng đến khi gặp nhau, người thứ nhất đi được nhiều hơn người thứ hai 2 km.

A. 7 km/h

B. 8 km/h

C. 9 km/h

D. 10 km/h

Đáp án: D

Giải thích:

Gọi vận tốc của người thứ nhất và người thứ hai lần lượt là x, y (km/h, x, y > 0)

Quãng đường người thứ nhất đi được khi gặp nhau là 2x (km)

Quãng đường người thứ hai đi được đến khi gặp nhau là 2y (km)

Ta có hệ phương trình

2x+2y=382x2y=2x=10y=9(tm)

Vậy vận tốc của người thứ nhất là 10 (km/h)

Câu 11. Nam có 360 viên bi trong hai hộp. Nếu Nam chuyển 30 viên bi từ hộp thứ hai sang hộp thứ nhất thì số viên vi ở hộp thứ nhất bằng 57 số viên bi ở hộp thứ hai. Hỏi hộp thứ hai có bao nhiêu viên bi?

A. 250 viên

B. 180 viên

C. 120 viên

D. 240 viên

Đáp án: D

Giải thích:

Gọi số viên bi trong hộp thứ nhất và hộp thứ hai lần lượt là x, y (0 < x, y < 360, viên)

Vì Nam có 360 viên bi nên ta có phương trình x + y = 360 (viên bi)

Nếu Nam chuyển 30 viên bi từ hộp thứ hai sang hộp thứ nhất thì số viên bi ở hộp thứ nhất bằng 57 số viên bi ở hộp thứ hai

nên ta có phương trình x+30=57y30

Suy ra hệ phương trình:

x+y=360x+30=57y30x+y=360x57y=3607127y=28807x+y=360

x=120; y=240 (tm)

Vậy số viên bi ở hộp thứ nhất là 120 viên bi, số viên bi ở hộp thứ hai là 240 viên bi.

Câu 12: Một tấm bìa hình tam giác có chiều cao bằng 14 cạnh đáy tương ứng. Nếu tăng chiều cao 2 dm và giảm cạnh đáy 2 dm thì diện tích tam giác tăng thêm 2,5 dm2. Tính chiều cao và cạnh đáy của tấm bìa lúc đầu.

A. 1,5 dm và 6 dm

B. 2 dm và 8 dm

C. 1 dm và 4 dm

D. 3 dm và 12 dm

Đáp án: A

Giải thích:

Gọi chiều cao của tam giác là h, cạnh đáy tam giác là a. (h, a*, dm); (a > 2)

Diện tích tam giác ban đầu là 12 ah (dm2)

Vì chiều cao bằng 14 cạnh đáy nên

ta có phương trình h=14a

Nếu chiều cao tăng thêm 2 dm và cạnh đáy giảm đi 2 dm thì diện tích của nó tăng thêm 2,5 dm2.

Nên ta có phương trình

12h+2a212ah=2,5

Ta có hệ phương trình:

h=14a12h+2a212ah=2,5h=14a2h+2a4=5h=14a2.14a+2a=9a=6h=1,5(tm)

Vậy chiều cao và cạnh đáy của tấm bìa lần lượt là 1,5 dm và 6 dm

Câu 13: Một xe đạp dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn 10 km thì đến nơi sớm hơn dự định 1 giờ, còn nếu xe chạy chậm lại mỗi giờ 5 km thì đến nơi chậm mất 2 giờ. Tính vận tốc của xe lúc ban đầu.

A. 8 km/h

B. 12 km/h

C. 10 km/h

D. 20 km/h

Đáp án: C

Giải thích:

Gọi vận tốc lúc đầu của xe là x (km/h; x > 10), thời gian theo dự định là y (y > 3) (giờ)

Quãng đường xe đi được là: x.y (km)

Nếu xe chạy mỗi giờ nhanh hơn 10km thì đến nơi sớm hơn dự định 1 giờ nên ta có phương trình

(x + 10) (y – 1) = xy

Nếu xe chạy chậm lại mỗi giờ 5 km thì đến nơi chậm mất 2 giờ nên ta có phương trình

(x – 5) (y + 2) = xy

Suy ra hệ phương trình

x+10y1=xyx5y+2=xyxyx+10y10=xyxy+2x5y10=xyx+10y=102x5y=10x=10y=2(tm)

Vậy vận tốc ban đầu là 10 km/h

Câu 14: Tháng thứ nhất, 2 tổ sản xuất được 1200 sản phẩm. Tháng thứ hai, tổ 1 vượt mức 30% và tổ II bị giảm năng suất 22% so với tháng thứ nhất. Vì vậy 2 tổ đã sản xuất được 1300 sản phẩm. Hỏi tháng thứ hai, tổ 2 sản xuất được bao nhiêu sản phẩm.

A. 400 sản phẩm

B. 450 sản phẩm

C. 390 sản phẩm

D. 500 sản phẩm

Đáp án: C

Giải thích:

Gọi số sản phẩm của tổ I sản xuất được trong tháng thứ I là x (sản phẩm)

Số sản phẩm của tổ II sản xuất được trong tháng thứ nhất là y (sản phẩm)

(x, y* )

Tháng thứ nhất 2 tổ sản xuất được 1200 sản phẩm nên ta có phương trình:

x + y = 1200 (1)

Tháng thứ hai tổ I vượt mức 30% và tổ II giảm mức đi 22% so với tháng thứ nhất nên 2 tổ đã sản xuất được 1300 sản phẩm,

ta có:

x+30100x+y22100y=1300130100x+78100y=1300 (2)

Từ (1) và (2) ta có hệ phương trình:

x+y=1200130100x+78100y=130078100x+78100y=936130100x+78100y=130052100x=364x+y=1200x=700x+y=1200x=700y=500(tm)

Vậy trong tháng thứ hai tổ II sản xuất được 500.78 : 100 = 390 sản phẩm

Câu 15: Một khu vườn hình chữ nhật có chu vi bằng 48 m. Nếu tăng chiều rộng lên bốn lần và tăng chiều dài lên ba lần thì chu vi của khu vườn sẽ là 162m. Tìm diện tích của khu vườn ban đầu.

A. 24m2

B. 153m2

C. 135m2

D. 14m2

Đáp án: C

Giải thích:

Gọi chiều dài và chiều rộng của khu vương hình chữ nhật lần lượt là x, y

(24 > x > y > 0; m)

Vì khu vườn hình chữ nhật có chu vi bằng 48 m nên ta có (x + y). 2 = 48

Nếu tăng chiều rộng lên bốn lần và chiều dài lên ba lần thì chu vi của khu vườn sẽ là 162m

Nên ta có phương trình (4y + 3x). 2 = 162

Suy ra hệ phương trình

x+y.2=484y+3x.2=162x+243x+4y=81x=15y=9(tm)

Vậy diện tích khu vườn ban đầu là

15.9 = 135m2

Câu 16: Cho một số có hai chữ số. Chữ số hàng chục lớn hơn chữ số hàng đơn vị là 5. Nếu đổi chỗ hai chữ số cho nhau ta được một số bằng 23 số ban đầu. Tìm tích các chữ số của số ban đầu

A. 12

B. 16

C. 14

D. 6

Đáp án: C

Giải thích:

Câu 17: Một ô tô đi quãng đường AB với vận tốc 50 km/h, rồi đi tiếp quãng đường BC với vận tốc 45 km/h. Biết quãng đường tổng cộng dài 165 km và thời gian ô tô đi trên quãng đường AB ít hơn thời gian đi trên quãng đường BC là 30 phút. Tính thời gian ô tô đi trên đoạn đường AB.

A. 2 giờ

B. 1,5 giờ

C. 1 giờ

D. 3 giờ

Đáp án: B

Giải thích:

Gọi thời gian ô tô đi trên mỗi đoạn đường AB và BC lần lượt là x, y

(x > 0; y > 0,5; đơn vị: giờ). Ta có hệ phương trình:

Vậy thời gian ô tô đi hết quãng đường AB là 1,5 giờ. Thời gian ô tô đi hết quãng đường BC là 2 giờ.

Câu 18: Một ô tô đi quãng đường AB với vận tốc 52 km/h, rồi đi tiếp quãng đường BC với vận tốc 42 km/h. Biết quãng đường tổng cộng dài 272 km và thời gian ô tô đi trên quãng đường AB ít hơn thời gian đi trên quãng đường BC là 2 giờ. Tính thời gian ô tô đi trên đoạn đường BC.

A. 2 giờ

B. 4 giờ

C. 1 giờ

D. 3 giờ

Đáp án: B

Giải thích:

Gọi thời gian ô tô đi trên mỗi đoạn đường AB và BC lần lượt là x, y

(x > 0; y > 2; đơn vị: giờ).

Quãng đường AB là 52x (km), quãng đường BC là 42 (km) mà tổng quãng đường 272 km nên ta có phương trình 52x + 42y = 272

Vì thời gian đi quãng đường AB ít hơn thời gian đi quãng đường BC là 2 giờ nên ta có phương trình y – x = 2

Từ đó ta có hệ phương trình:

Vậy thời gian ô tô đi hết quãng đường AB là 2 giờ. Thời gian ô tô đi hết quãng đường BC là 4 giờ

Câu 19: Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn 10 km thì đến nơi sớm hơn dự định 3 giờ, còn nếu xe chạy chậm lại mỗi giờ 10 km thì đến nơi chậm mất 5 giờ. Tính vận tốc của xe lúc ban đầu

A. 40 km/h

B. 35 km/h

C. 50 km/h

D. 60 km/h

Đáp án: A

Giải thích:

Gọi vận tốc lúc đầu của xe là x (km/h; x > 10), thời gian theo dự định là y (y > 3) (giờ)

Nếu xe chạy mỗi giờ nhanh hơn 10km thì đến nơi sớm hơn dự định 3 giờ nên ta có phương trình (x + 10) (y – 3) = xy

Suy ra hệ phương trình :

Vậy vận tốc ban đầu là 40 km/h

Câu 20: Một cano chạy trên sông trong 7 giờ, xuôi dòng 108 km và ngược dòng 63 km. Một lần khác cũng trong 7 giờ, cano xuôi dòng 81 km và ngược dòng 84 km. Tính vận tốc nước chảy

A. 4 km/h

B. 3 km/h

C. 2 km/h

D. 2,5 km/h

Đáp án: B

Giải thích:

Gọi vận tốc thực của cano là x (km/h, x > 0), vận tốc dòng nước là y (km/h, 0 < y < x)

Vận tốc cano khi xuôi dòng là x + y (km/h), vận tốc cano khi ngược dòng là: x – y (km/h)

Cano chạy trên sông trong 7 giờ, xuôi dòng 108 km và ngược dòng 63 km nên ta có phương trình

108x+y+63x-y=7

Cano chạy trên sông trong 7 giờ, xuôi dòng 81 km và ngược dòng 84 km nên ta có phương trình:

81x+y+84x-y=7

Ta có hệ phương trình:

Câu 21: Một chiếc cano đi xuôi dòng theo một khúc sông trong 3 giờ và đi ngược dòng trong 4 giờ, được 380 km. Một lần khác cano này xuôi dòng trong 1 giờ và ngược dòng trong vòng 30 phút được 85 km. Hãy tính vận tốc của dòng nước (vận tốc thật của cano và vận tốc dòng nước ở hai lần là như nhau)

A. 5 km/h

B. 3 km/h

C. 2 km/h

D. 2,5 km/h

Đáp án: A

Giải thích:

Gọi vận tốc thực của cano là x (km/h, x > 0), vận tốc dòng nước là y (km/h, 0 < y < x)

Vận tốc cano khi xuôi dòng là x + y (km/h), vận tốc cano khi ngược dòng là: x – y (km/h)

Cano đi xuôi dòng theo một khúc sông trong 3 giờ và đi ngược dòng trong 4 giờ, được 380 km nên ta có phương trình: 3 (x + y) + 4 (x – y) = 380

Cano xuôi dòng trong 1 giờ và ngược dòng trong 30 phút được 85 km nên ta có phương trình:

x+y+12(x-y)=85

Vậy vận tốc dòng ngước là 5 km/h

Câu 22: Hai người đi xe máy xuất phát đồng thời từ hai thành phố cách nhau 225 km. Họ đi ngược chiều và gặp nhau sau 3 giờ. Hỏi vận tốc của người thứ nhất, biết rằng vận tốc người thứ nhất lớn hơn người thứ hai 5 km/h

A. 40 km/h

B. 35 km/h

C. 45 km/h

D. 50 km/h

Đáp án: A

Giải thích:

Gọi vận tốc của người thứ nhất và người thứ hai lần lượt là x, y (km.h, x > 5, y > 0)

Quãng đường người thứ nhất đi được khi gặp nhau là 3x (km)

Quãng đường người thứ hai đi được đến khi gặp nhau là 3y (km)

Ta có hệ phương trình:

Vậy vận tốc của người thứ nhất là 40 km/h

Câu 23: Hai người đi xe đạp xuất phát đồng thời từ hai thành phố cách nhau 38 km. Họ đi ngược chiều và gặp nhau sau 2 giờ. Hỏi vận tốc của người thứ nhất, biết rằng đến khi gặp nhau, người thứ nhất đi được nhiều hơn người thứ hai 2 km

A. 7 km/h

B. 8 km/h

C. 9 km/h

D. 10 km/h

Đáp án: D

Giải thích:

Gọi vận tốc của người thứ nhất và người thứ hai lần lượt là x, y (km/h, x, y > 0)

Quãng đường người thứ nhất đi được khi gặp nhau là 2x (km)

Quãng đường người thứ hai đi được đến khi gặp nhau là 2y (km)

Vậy vận tốc của người thứ nhất là 10 (km/h)

Câu 24: Một khu vườn hình chữ nhật có chu vi bằng 48 m. Nếu tăng chiều rộng lên bốn lần và tăng chiều dài lên ba lần thì chu vi của khu vườn sẽ là 162m. Tìm diện tích của khu vườn ban đầu

A. 24m2

B. 153m2

C. 135m2

D. 14m2

Đáp án: C

Giải thích:

Gọi chiều dài và chiều rộng của khu vương hình chữ nhật lần lượt là x, y

(24 > x > y > 0; m)

Vì khu vườn hình chữ nhật có chu vi bằng 48 m nên ta có (x + y). 2 = 48

Nếu tăng chiều rộng lên bốn lần và chiều dài lên ba lần thì chu vi của khu vườn sẽ là 162m

Nên ta có phương trình (4y + 3x). 2 = 162

Suy ra hệ phương trình

Vậy diện tích khu vườn ban đầu là: 15.9 = 135m2

Câu 25: Một hình chữ nhật có chu vi 300cm. Nếu tăng chiều rộng thêm 5cm và giảm chiều dài 5 cm thì diện tích tăng 275 cm2. Tính chiều dài và chiều rộng của hình chữ nhật

A. 120 cm và 30 cm

B. 105 cm và 45 cm

C. 70 cm và 80 cm

D. 90 cm và 60 cm

Đáp án: B

Giải thích:

Gọi chiều dài và chiều rộng của khu vương hình chữ nhật lần lượt là x, y

(150 > x > y > 0; cm)

Diện tích ban đầu của khu vương là x.y cm2

Vì hình chữ nhật có chu vi bằng 300 (cm) nên ta có

(x + y). 2 = 300

Nếu tăng chiều rộng thêm 5 cm và giảm chiều dài 5cm thì diện tích tăng 275cm2

Nên ta có phương trình (x − 5).(y + 5) = xy + 275

Suy ra hệ phương trình:

Các câu hỏi trắc nghiệm Toán lớp 9 có đáp án, chọn lọc khác:

Trắc nghiệm Ôn tập chương 3 có đáp án – Toán 9

Trắc nghiệm Một số hệ thức về cạnh và đường cao trong tam giác vuông có đáp án – Toán 9

Trắc nghiệm Tỉ số lượng giác của góc nhọn và Bảng lượng giác có đáp án - Toán 9

Trắc nghiệm Một số hệ thức về cạnh và góc trong tam giác vuông có đáp án – Toán 9

Trắc nghiệm Ôn tập chương 1 Hình học có đáp án – Toán 9

1 1,036 25/12/2023
Tải về


Xem thêm các chương trình khác: