Giải Toán 11 trang 84 Tập 1 Chân trời sáng tạo

Với giải bài tập Toán 11 trang 84 trong Bài 3: Hàm số liên tục sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 84.

1 550 30/06/2023


Giải Toán 11 trang 84 Tập 1

Thực hành 5 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số:

a) y = x2+1 + 3 - x;

b) y = x21x.cos x.

Lời giải:

a) Đặt y = f(x) = x2+1 + 3 - x

Tập xác định của hàm số D = ℝ.

Khi đó limxx0fx=limxx0x2+1+3x=x02+1+3x0=fx0.

Vậy hàm số liên tục trên ℝ.

b) Đặt y = g(x) = x21x.cos x.

Tập xác định của hàm số D = ℝ\{0}.

Trên các khoảng (– ∞; 0) và (0; +∞) ta thấy hàm số y=x21x và y = cos x liên tục.

Vậy hàm số đã cho liên tục trại mọi điểm x0 ≠ 0.

Vận dụng 3 trang 84 Toán 11 Tập 1: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) tâm O, bán kính bằng 1. Một đường thẳng d thay đổi, luôn vuông góc với trục hoành, cắt trục hoành tại điểm M có hoành độ x (– 1 < x < 1) và cắt đường tròn (C) tại các điểm N và P (xem Hình 6).

a) Viết biểu thức S(x) biểu thị diện tích của tam giác ONP.

b) Hàm số y = S(x) có liên tục trên (– 1; 1) không? Giải thích.

c) Tìm các giới hạn limx1Sx và limx1+Sx.

Vận dụng 3 trang 84 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Xét tam giác OMN vuông tại M có:

MN = ON2OM2=1x2

NP=21x2

Diện tích của tam giác ONP là:

S(x) = 12.NP.OM = 12.2.1-x2.x = x1-x2

b) Trên (– 1; 1) hàm số y = 1-x2 xác định và liên tục và hàm số y = x liên tục.

Do đó hàm số S(x) liên tục trên (– 1; 1).

c) Ta có:

limx1+Sx=limx1+1x2.x=0

limx1Sx=limx11x2.x=0.

Bài tập

Bài 1 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số sau:

a) f(x) = Bài 1 trang 84 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 tại điểm x = 0;

b) f(x) = Bài 1 trang 84 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 tại điểm x = 1.

Lời giải:

a) Tại x = 0, ta có:

limx0+fx=limx0+x2+1=1;

limx0fx=limx01x=1.

Suy ra limx0+fx=limx0fx=1. Do đó limx0fx=1

Mà f(0) = 02 + 1 = 1 nên limx0fx=f0=1.

Vậy hàm số đã cho liên tục tại điểm x = 0.

b) Tại x = 1 ta có:

limx1+fx=limx1+x2+2=3;

limx1fx=limx1x=1.

Suy ra limx1+fxlimx1fx. Do đó không tồn tại limx1fx.

Vậy hàm số không liên tục tại x = 1.

Bài 2 trang 84 Toán 11 Tập 1: Cho hàm số f(x) = Bài 2 trang 84 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11. Tìm a để hàm số f(x) liên tục trên ℝ.

Lời giải:

Ta có:

limx2fx=limx2x24x+2=limx2x2x+2x+2=limx2x2=4.

f(-2) = a.

Để hàm số f(x) liên tục trên ℝ thì hàm số liên tục tại x = – 2

limx2fx= f(-2)

a = -4

Vậy a = – 4 thì hàm số đã cho liên tục trên ℝ.

Xem thêm lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: 

Giải Toán 11 trang 80 Tập 1

Giải Toán 11 trang 81 Tập 1

Giải Toán 11 trang 82 Tập 1

Giải Toán 11 trang 83 Tập 1

Giải Toán 11 trang 84 Tập 1

Giải Toán 11 trang 85 Tập 1

1 550 30/06/2023


Xem thêm các chương trình khác: