Vận dụng 2 trang 83 Toán 11 Tập 1 | Chân trời sáng tạo Giải Toán lớp 11

Lời giải Vận dụng 2 trang 83 Toán 11 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 477 30/06/2023


Giải Toán 11 Bài 3: Hàm số liên tục 

Vận dụng 2 trang 83 Toán 11 Tập 1: Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau:

T(x) = Vận dụng 2 trang 83 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Xét tính liên tục của hàm số T(x).

Vận dụng 2 trang 83 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) Với x0 ∈ (0; 0,7) hàm số f(x) = 10 000 là hàm đa thức nên liên tục trên (0; 0,7).

+) Với x0 ∈ (0,7; 20) hàm số f(x) = 10 000 + (x – 0,7).14 000 là hàm đa thức nên liên tục trên (0,7; 20).

+) Với x0 ∈ (20; +∞) hàm số f(x) = 280 200 + (x – 20).12 000 là hàm đa thức nên liên tục trên (20; +∞).

+) Tại x0 = 0,7 ta có:

limx0,7fx=limx0,710000=10000;

limx0,7+fx=limx0,7+[10 000 + (x-0,7).14 000] = 10 000.

Suy ra limx0,7fx=limx0,7+fx=10000. Do đó tồn tại limx0,7fx=10000.

Mà f(0,7) = 10 000 nên limx0,7fx= f(0,7) = 10000.

Vì vậy hàm số liên tục tại x0 = 0,7.

+) Tại x0 = 20 ta có:

limx20fx=limx20[10 000 + (x-0,7).14 000] = 280 200.

limx20+fx=limx20+[280 200+(x-20).12 000] = 280 200.

Suy ra limx20fx=limx20+fx=280200. Do đó tồn tại limx20fx=280200.

Mà f(20) = 280 200 nên limx20fx=f20=280200.

Vì vậy hàm số liên tục tại x = 20.

Vậy hàm số T(x) liên tục trên ℝ.

1 477 30/06/2023


Xem thêm các chương trình khác: