Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác
Với giải bài tập Toán lớp 11 Bài 1: Góc lượng giác sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 Bài 1.
Giải Toán 11 Bài 1: Góc lượng giác
Bài giảng Toán 11 Bài 1: Góc lượng giác
Lời giải:
Sau bài học này ta sẽ trả lời được như sau:
Các chuyển động này có:
+) Điểm chung là: Đều chuyển động quay từ điểm A đến điểm B.
+) Điểm khác là: Góc lượng giác.
Lời giải:
a) Vì cứ mỗi giây, bánh lái quay một góc 60° nên tương ứng ta có:
Với t = 1 (giây) thì α = 60°;
Với t = 2 (giây) thì α = 2.60° = 120°;
Với t = 3 (giây) thì α = 3.60° = 180°;
Với t = 4 (giây) thì α = 4.60° = 240°;
Với t = 5 (giây) thì α = 5.60° = 300°;
Với t = 6 (giây) thì α = 6.60° = 360°;
Khi đó ta có bảng:
Thời gian t (giây) |
1 |
2 |
3 |
4 |
5 |
6 |
Góc quay α |
60° |
120° |
180° |
240° |
300° |
360° |
b) Vì cứ mỗi giây, bánh lái quay một góc – 60° nên tương ứng ta có:
Với t = 1 (giây) thì α = – 60°;
Với t = 2 (giây) thì α = 2.(– 60°) = – 120°;
Với t = 3 (giây) thì α = 3.(– 60°) = – 180°;
Với t = 4 (giây) thì α = 4.(– 60°) = – 240°;
Với t = 5 (giây) thì α = 5.(– 60°) = – 300°;
Với t = 6 (giây) thì α = 6.(– 60°) = – 360°;
Khi đó ta có bảng:
Thời gian t (giây) |
1 |
2 |
3 |
4 |
5 |
6 |
Góc quay α |
– 60° |
– 120° |
– 180° |
– 240° |
– 300° |
– 360° |
Lời giải:
Số đo góc lượng giác (OM, ON) trong Hình 6a là 60°.
Số đo góc lượng giác (OM, ON) trong Hình 6b là 2.360° + 60° = 780°.
Số đo góc lượng giác (OM, ON) trong Hình 6c là – (360° – 60°) = –300°.
Lời giải:
Từ 0 giờ đến 2 giờ, kim phút quay được 2 vòng tròn tương ứng với quét một góc: 2.360° = 720°.
Còn 15 phút còn lại kim phút quay quét thêm một góc lượng giác là: 90°.
Vì vậy từ 0 giờ đến 2 giờ 15 phút, kim phút quét một góc lượng giác: 720° + 90° = 810°.
Hoạt động khám phá 2 trang 9 Toán 11 Tập 1: Cho Hình 7:
a) Xác định số đo các góc lượng giác (Oa, Ob), (Ob, Oc) và (Oa, Oc).
b) Nhận xét về mối liên hệ giữa ba số đo góc này.
Lời giải:
a) Số đo của góc lượng giác (Oa, Ob) có tia đầu là Oa và tia cuối là Ob là 135°.
Số đo của góc lượng giác (Ob, Oc) có tia đầu là Ob và tia cuối là Oc là – 80°.
Ta có: .
Khi đó số đo của góc lượng giác (Oa, Oc) có tia đầu là Oa và tia cuối là Oc là 55° + 360° = 415°.
b) Ta có: 135° + (– 80°) = 415° – 360°.
Vậy (Oa, Ob) + (Ob, Oc) = (Oa, Oc) – 360°.
Lời giải:
Chiếc quạt có ba cạnh được phân bố đều nhau nên .
+) Với ba tia OM, Ox và ON, ta có:
(Ox, OM) + (OM, ON) = (Ox, ON) + k1360° (k1 ∈ ℤ)
⇒ (Ox, ON) = (Ox, OM) + (OM, ON) – k1360°
⇒ (Ox, ON) = 120° + (– 50°) – k1360°
⇒ (Ox, ON) = 70° – k1360°.
+) Với ba tia Ox, ON, OP, ta có:
(Ox, ON) + (ON, OP) = (Ox, OP) + k2360° (k2 ∈ ℤ)
⇒ (Ox, OP) = (Ox, ON) + (ON, OP) – k2360°
⇒ (Ox, OP) = 70° – k1360° + 120° – k2360°
⇒ (Ox, OP) = 190° – (k1 + k2) 360°
⇒ (Ox, OP) = 190° – k 360° (với k = k1 + k2).
Lời giải:
Tiến hành đo góc ta được .
Thực hành 2 trang 11 Toán 11 Tập 1: Hoàn thành bảng chuyển đổi đơn vị đo của các góc sau đây:
Lời giải:
Ta có:
rad;
rad.
Số đo theo độ |
0° |
30° |
45° |
60° |
90° |
120° |
135° |
150° |
180o |
Số đo theo rad |
0 rad |
rad |
rad |
rad |
rad |
rad |
rad |
rad |
rad |
a) Cho điểm B(0; 1). Số đo góc lượng giác (OA, OB) bằng bao nhiêu radian?
Lời giải:
Ta có hình vẽ:
a) Ta có: Số đo góc lượng giác (OA, OB) bằng 90°.
b) Điểm A’ là điểm nằm trên đường tròn lượng giác thỏa mãn (OA, OA’) bằng π. Khi đó ta có hình vẽ:
Điểm B’ là điểm nằm trên đường tròn lượng giác thỏa mãn (OA, OB’) bằng . Khi đó ta có hình vẽ:
Lời giải:
a) Ta có: – 1 485° = – 45° + ( – 4).360°.
Biểu diễn góc trên đường tròn lượng giác ta được:
b) Ta có:
Biểu diễn góc trên đường tròn lượng giác ta được:
Bài tập
Bài 1 trang 12 Toán 11 Tập 1: Đổi số đo của các góc dưới đây sang radian:
Lời giải:
a) Ta có: 38° = rad;
b) – 115° = rad;
c) rad.
Bài 2 trang 12 Toán 11 Tập 1: Đổi số đo của các góc sau đây sang độ:
Lời giải:
a) Ta có: rad = .
b) Ta có: – 5 rad = ;
c) Ta có: rad = .
Bài 3 trang 12 Toán 11 Tập 1: Biểu diễn các góc lượng giác sau trên đường tròn lượng giác:
Lời giải:
a) Ta có:
Vì vậy điểm biếu diễn góc lượng giác có số đo là điểm nằm trên phần đường tròn lượng giác thuộc góc phần tư thứ I sao cho hay .
Biểu diễn góc này trên đường tròn lượng giác ta được:
b) Ta có:
Biểu diễn góc này trên đường tròn lượng giác ta được:
c) Ta có: – 765° = (– 2).360° – 45°
Biểu diễn góc này trên đường tròn lượng giác ta được:
Lời giải:
Hai góc lượng giác α và β có cùng điểm biểu diễn trên đường tròn lượng giác khi tồn tại số nguyên k khác 0 thỏa mãn: α = k.2π + β
Ta có:
(thỏa mãn) nên có cùng điểm biểu diễn với góc lượng giác
(không thỏa mãn) nên không có cùng điểm biểu diễn với góc lượng giác
(thỏa mãn) nên có cùng điểm biểu diễn với góc lượng giác
Lời giải:
Công thức số đo tổng quát của các góc lượng giác (OA, OM) là:
(OA, OM) = 120° + k360° (k ∈ ℤ).
Công thức số đo tổng quát của các góc lượng giác (OA, ON) là:
(OA, ON) = – 75° + k360° (k ∈ ℤ).
Lời giải:
Vì bánh ô tô được chia làm 5 phần đều nhau nên mỗi phần sẽ có số đo góc là: 360° : 5 = 72°. Góc MON chiếm 2 phần nên có số đo góc là 2.72° = 144°.
Khi đó .
Vậy công thức số đo tổng quát của góc lượng giác (Ox, ON) = 27° + k.360°.
Lời giải:
a) Với k = 0 thì có góc lượng giác có số đo góc là , được biểu diễn bởi điểm M;
Với k = 1 thì có góc lượng giác có số đo góc là , được biểu diễn bởi điểm N;
Với k = 2 thì có góc lượng giác có số đo góc là nên cũng được biểu diễn bởi điểm M;
Với k = 3 thì có góc lượng giác có số đo góc là nên cũng được biểu diễn bởi điểm N.
Vậy với k chẵn thì các góc lượng giác có số đo dạng được biểu diễn bởi điểm M, với k lẻ thì các góc lượng giác có số đo dạng được biểu diễn bởi điểm N khi đó ta có hình vẽ sau:
b) Với k = 0 thì có góc lượng giác có số đo góc là 0, được biểu diễn bởi điểm A;
Với k = 1 thì có góc lượng giác có số đo góc là , được biểu diễn bởi điểm M;
Với k = 2 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm B;
Với k = 3 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm N;
Với k = 4 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm A’;
Với k = 5 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm M’;
Với k = 6 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm B’;
Với k = 7 thì có góc lượng giác có số đo góc là được biểu diễn bởi điểm N’;
Với k = 8 thì có góc lượng giác có số đo góc là nên được biểu diễn bởi điểm A;
Vậy các góc lượng giác có số đo dạng được biểu diễn bởi các điểm A, M, B, N, A’, M’, B’, N’. Khi đó ta có hình vẽ sau:
Lời giải:
+) Xét các góc lượng giác có số đo
Với k chẵn ta có các góc lượng giác có số đo được biểu diễn bởi điểm B;
Với k lẻ ta có các góc lượng giác có số đo được biểu diễn bởi điểm B’(0; – 1).
Vì vậy các điểm B, C, D không thể biểu diễn cho các góc lượng giác có số đo .
+) Xét các góc lượng giác có số đo
Với k = 0 ta có góc lượng giác có số đo được biểu diễn bởi điểm D.
Với k = 1 ta có góc lượng giác có số đo được biểu diễn bởi điểm B.
Với k = 2 ta có góc lượng giác có số đo được biểu diễn bởi điểm C.
Với k = 3 ta có góc lượng giác có số đo được biểu diễn bởi điểm D.
Vì vậy các góc lượng giác có số đo được biểu diễn bởi các điểm B, C, D.
+) Xét các góc lượng giác có số đo
Với k = 0 ta có góc lượng giác có số đo được biểu diễn bởi điểm B.
Với k = 1 ta có góc lượng giác có số đo được biểu diễn bởi điểm M.
Với k = 2 ta có góc lượng giác có số đo được biểu diễn bởi điểm C.
Với k = 3 ta có góc lượng giác có số đo được biểu diễn bởi điểm B’.
Với k = 4 ta có góc lượng giác có số đo được biểu diễn bởi điểm D.
Với k = 5 ta có góc lượng giác có số đo được biểu diễn bởi điểm N.
Với k = 6 ta có góc lượng giác có số đo được biểu diễn bởi điểm B.
Ví vậy các điểm B, C, D không thể biểu diễn cho các góc lượng giác có số đo là .
Lời giải:
Ta có:
Độ dài cung chắn góc α là: α.R = .6 371 1,85 km.
Vậy 1 hải lí bằng 1,85 km.
Lý thuyết Góc lượng giác
1. Góc lượng giác
* Khái niệm góc lượng giác
- Cho 2 tia Oa, Ob.
Nếu tia Om quay quanh gốc O của nó theo một chiều cố định bắt đầu từ vị trí tia Oa và dừng ở vị trí tia Ob thì ta nói tia Om quét một góc lượng giác có tia đầu Oa, tia cuối Ob.
Kí hiệu: (Oa, Ob).
- Khi tia Om quay một góc ta nói số đo của góc lượng giác (Oa, Ob) bằng , kí hiệu sđ(Oa, Ob) =
* Chú ý:
- Với 2 tia Oa, Ob cho trước, có vô số góc lượng giác tia đầu Oa, tia cuối Ob. Ta dùng chung kí hiệu (Oa, Ob) cho tất cả các góc lượng giác này.
- Số đo các góc lượng giác có cùng tia đầu Oa, tia cuối Ob sai khác nhau một bội nguyên của 360o có công thức là:
Sđ(Oa,Ob) = + k360o, .
* Hệ thức Chasles
Với 3 tia Ou, Ov, Ow bất kì ta có:
Sđ(Ou,Ov) + sđ(Ov, Ow) = sđ(Ou,Ow) +k360o, .
2. Đơn vị radian
Trên đường tròn bán kính R tùy ý, góc ở tâm chắn một cung có độ dài đúng bằng R được gọi là một góc có số đo 1 radian (rad).
Ta có: rad, do đó 1 rad , rad.
rad , rad.
3. Đường tròn lượng giác
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm O bán kính 1. Trên đường tròn này chọn điểm A(1;0) làm gốc, chiều dương là chiều ngược chiều kim đồng hồ và chiều âm là chiều xùng chiều kim đồng hồ. Đường tròn cùng với gốc và chiều như trên gọi là đường tròn lượng giác.
Sơ đồ tư duy Góc lượng giác
Xem thêm lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Giá trị lượng giác của một góc lượng giác
Bài 3: Các công thức lượng giác
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo