Giải Toán 11 trang 108 Tập 1 Cánh diều

Với giải bài tập Toán 11 trang 108 trong Bài 4: Hai mặt phẳng song song sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 108.

1 662 02/11/2023


Giải Toán 11 trang 108 Tập 1

Luyện tập 3 trang 108 Toán 11 Tập 1: Cho hai mặt phẳng (P) và (Q) song song với nhau. Đường thẳng a cắt hai mặt phẳng trên theo thứ tự tại A, B. Đường thẳng b song song với đường thẳng a và cắt hai mặt phẳng (P) và (Q) lần lượt tại A’, B’. Chứng minh rằng AB = A’B’.

 

Lời giải:

Luyện tập 3 trang 108 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Giả sử (R) = (a, b).

Ta có: A ∈ (R) và A ∈ (P) nên A là giao điểm của hai mặt phẳng (R) và (P).

           A’  ∈ (R) và A’ ∈ (P) nên A’ là giao điểm của hai mặt phẳng (R) và (P).

Do đó (R) ∩ (P) = AA’.

Tương tự ta cũng có (R) ∩ (Q) = BB’.

Do (P) // (Q);

      (R) ∩ (P) = AA’;

      (R) ∩ (Q) = BB’

Suy ra AA’ // BB’

Trong mp(R), xét tứ giác ABB’A’ có: AA’ // BB’ và AB // A’B’ (do a // b)

Suy ra ABB’A’ là hình bình hành

Do đó AB = A’B’.

III. Định lí Thales

Hoạt động 5 trang 108 Toán 11 Tập 1: Cho ba mặt phẳng song song (P), (Q), (R). Hai cát tuyến bất kì a và a’ cắt ba mặt phẳng song song lần lượt tại các điểm A, B, C và A’, B’, C’. Gọi B1 là giao điểm của AC’ với mặt phẳng (Q) (Hình 66).

 

Hoạt động 5 trang 108 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Nêu vị trí tương đối của BB1 và CC’; B1B’ và AA’.

b) Có nhận xét gì về các tỉ số: ABAB1,BCB1C'  và CAC'A;AB1A'B',B1C'B'C'  và C'AC'A' .

c) Từ kết quả câu a) và câu b), so sánh các tỉ số ABA'B',BCB'C'  và CAC'A' .

Lời giải:

a) Ta có: B ∈ (ACC’) và B ∈ (Q) nên B là giao điểm của (ACC’) và (Q);

               B­1 ∈ (ACC’) và B1 ∈ (Q) nên B1 là giao điểm của (ACC’) và (Q).

Do đó (ACC’) ∩ (Q) = BB1.

Tương tự, ta có (ACC’) ∩ (R) = CC’.

Ta có: (Q) // (R);

           (ACC’) ∩ (Q) = BB1;

           (ACC’) ∩ (R) = CC’.

Suy ra BB1 // CC’.

Chứng minh tương tự ta cũng có: (P) // (Q);

                                                      (AA’C’) ∩ (P) = AA’;

                                                      (AA’C’) ∩ (Q) = B1B’.

Suy ra B1B’ // AA’.

b) Trong mp(ACC’), xét DACC’ có: BB1 // CC’ nên theo định lí Thalès ta có:

• ABAC=AB1AC' , suy ra ABAB1=CAC'A ;

• BCAC=B1C'AC' , suy ra BCB1C'=CAC'A .

Do đó ABAB1=BCB1C'=CAC'A .

Trong mặt phẳng (AA’C’), xét AA’C’có: B1B’ // AA’ nên theo định lí Thalès ta có:

• AB1AC'=A'B'A'C' , suy ra AB1A'B'=C'AC'A' ;

• B1C'AC'=B'C'A'C' , suy ra B1C'B'C'=C'AC'A' .

Do đó AB1A'B'=B1C'B'C'=C'AC'A' .

c) Theo chứng minh ở câu b ta có:

•  ABAC=AB1AC'và AB1AC'=A'B'A'C'  nên ABAC=A'B'A'C'=AB1AC'

Do đó ABA'B'=CAC'A'.

• BCAC=B1C'AC'  và B1C'AC'=B'C'A'C' nên BCAC=B'C'A'C'=B1C'AC'

Do đó BCB'C'=CAC'A' .

Vậy ABA'B'=BCB'C'=CAC'A' .

Xem thêm lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác: 

Giải Toán 11 trang 105 Tập 1

Giải Toán 11 trang 106 Tập 1

Giải Toán 11 trang 107 Tập 1

Giải Toán 11 trang 108 Tập 1

Giải Toán 11 trang 109 Tập 1

1 662 02/11/2023


Xem thêm các chương trình khác: