Giải Toán 10 trang 59 Tập 1 Cánh diều
Với giải bài tập Toán lớp 10 trang 59 Tập 1 trong Bài 5: Hai dạng phương trình quy về phương trình bậc hai sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 59 Tập 1.
Giải Toán 10 trang 59 Tập 1
Bài 2 trang 59 Toán lớp 10 Tập 1: Giải các phương trình sau:
Lời giải:
a)
(1)
Điều kiện: 3 – 2x ≥ 0 ⇔ x ≤ (2).
Bình phương hai vế của phương trình (1) ta được: 2 – x = (3 – 2x)2
⇔ 2 – x = 9 – 12x + 4x2
⇔ 4x2 – 11x + 7 = 0
Ta thấy x = 1 thỏa mãn (2) và không thỏa mãn (2).
Vậy nghiệm của phương trình đã cho là x = 1.
b)
(3)
Điều kiện: 4 – x ≥ 0 ⇔ x ≤ 4 (4)
Bình phương hai vế của phương trình (3) ta được: – x2 + 7x – 6 = (4 – x)2
⇔ – x2 + 7x – 6 = 16 – 8x + x2
⇔ 2x2 – 15x + 22 = 0
Ta thấy x = 2 thỏa mãn (4) và không thỏa mãn (4).
Vậy nghiệm của phương trình đã cho là x = 2.
Lời giải:
Gọi chiều cao của bức tường là x (mét) (x > 0).
Vì chiếc thang cao hơn tường 1 m nên chiều cao của chiếc thang là x + 1 (m).
Hình 33a) tương ứng ta có: AC = x, AB = x + 1
Xét tam giác ABC vuông tại C:
AB2 = AC2 + BC2 (định lý Pythagore)
⇒ BC2 = AB2 – AC2 = (x + 1)2 – x2 = (x + 1 – x)(x + 1 + x) = 2x + 1
(m).
Hình 33b) ta thấy chiều cao bức tường không thay đổi nên DG = x (m).
Khi bác Nam dịch chuyển chân thang vào gần tường thêm 0,5 m thì GE = BC – 0,5.
Suy ra (m)
Xét tam giác DGE vuông tại G, ta có:
⇔
⇔
⇔
(1)
Điều kiện (2)
Bình phương hai vế của (1) ta được:
Ta thấy chỉ có x ≈ 4,7 thỏa mãn x > 0 và điều kiện (2).
Vậy bức tường cao khoảng 4,7 m.
Lời giải:
Gọi độ dài khoảng cách từ vị trí C đến D là x (km, x > 0).
Đổi: 300 m = 0,3 km; 800 m = 0,8 km; 7,2 phút = 0,12 giờ.
Tương ứng ta có: AC = 0,3 km; CD = x km; BC = 0,8 km; DB = BC – CD = 0,8 – x (km).
Xét tam giác ACD vuông tại C, ta có:
AD2 = AC2 + CD2 (định lý Pythagore)
AD2 = (0,3)2 + x2 = 0,09 + x2
(km)
Thời gian người đó chèo thuyền từ vị trí A đến vị trí D là (giờ).
Thời gian người đó chạy bộ từ vị trí D đến vị trí B là (giờ).
Tổng thời gian người đó chèo thuyền và đi bộ là (giờ).
Vì người đó mất 0,12 giờ chèo thuyền và chạy bộ từ A đến B nên ta có phương trình:
(1)
Điều kiện 1,2 + 3x ≥ 0 ⇔ (2)
Bình phương cả hai vế của (1) ta được: 25.(0,09 + x2) = (1,2 + 3x)2
⇔ 2,25 + 25x2 = 1,44 + 7,2x + 9x2
⇔ 16x2 – 7,2x + 0,81 = 0
⇔ x = 0,225 (thỏa mãn điều kiện x > 0 và điều kiện (2))
Ta có: x = 0,225 km = 225 m.
Vậy khoảng cách từ vị trí C đến D là 225 m.
Lời giải:
Gọi khoảng cách từ vị trí B đến M là x (km, x > 0).
Tương ứng trên hình vẽ ta có: AB = 4 km, BM = x km, BC = 7 km.
Xét tam giác ABM vuông tại B, ta có:
AM2 = AB2 + BM2 (định lý Pythagore)
⇔ AM2 = 42 + x2 = 16 + x2
(km)
Thời gian chèo thuyền từ A đến M là (giờ).
Ta có: MC = BC – BM = 7 – x (km).
Thời gian đi bộ từ M đến C là (giờ).
Tổng thời gian người đó đi từ A đến C là: (giờ)
Biết thời gian đi từ A đến C là 148 phút = giờ nên ta có phương trình:
(1)
Điều kiện 16 + 3x ≥ 0 ⇔ x ≥ (2)
Bình phương cả hai vế của (1) ta được: 25.(16 + x2) = (16 + 3x)2
⇔ 400 + 25x2 = 256 + 96x + 9x2
⇔ 16x2 – 96x + 144 = 0
⇔ x = 3 (thỏa mãn điều kiện x > 0 và (2))
Vậy khoảng cách từ vị trí B đến vị trí M là 3 km.
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều