Giải SBT Toán 7 trang 68 Tập 1 Kết nối tri thức

Với Giải SBT Toán 7 trang 68 Tập 1 trong Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng Toán lớp 7 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 7 trang 68.

1 650 30/12/2022


Giải SBT Toán 7 trang 68 Tập 1 Kết nối tri thức

Bài 4.41 trang 68 SBT Toán 7 Tập 1: Trong những tam giác dưới đây (H.4.46), tam giác nào là tam giác cân, cân tại đỉnh nào? Vì sao?

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

+ Tam giác ABC có AB = AC (kí hiệu bằng nhau trên hình)

Do đó, tam giác ABC cân tại đỉnh A.

+ Áp dụng định lí tổng 3 góc trong tam giác DEF, ta có:

D^+E^+F^=180°

Suy ra F^=180°D^+E^=180°70°+50°=60°.

Do đó ta có, D^E^F^. Vậy tam giác DEF không phải tam giác cân.

+ Tam giác MNP có N^=P^   =50°.

Do đó, tam giác MNP cân tại đỉnh M.

+ Áp dụng định lí tổng 3 góc trong tam giác KGH, ta có:

K^+G^+H^=180°

Suy ra H^=180°K^+G^=180°40°+70°=70°.

Do đó tam giác KGH có G^=H^=70°.

Vậy tam giác KGH cân tại đỉnh K.

Bài 4.42 trang 68 SBT Toán 7 Tập 1: Tính số đo các góc còn lại trong các tam giác cân dưới đây (H.4.47).

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

+ Tam giác ABC có AB = AC nên tam giác ABC cân tại đỉnh A.

Suy ra C^=B^=65°.

Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:

A^+B^+C^=180°

Suy ra A^=180°B^+C^=180°65°+65°=50°.

+ Tam giác MNP có MN = MP nên tam giác MNP cân tại đỉnh M.

Suy ra M^=N^.

Áp dụng định lí tổng ba góc trong tam giác MNP, ta có:

M^+N^+P^=180°

M^+M^=180°P^2M^=180°P^

M^=180°P^2=180°75°2=52,5°.

Vậy M^=N^=52,5°.

Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác: 

Giải SBT Toán 7 trang 69 Tập 1

Giải SBT Toán 7 trang 70 Tập 1

Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 12: Tổng các góc trong một tam giác

Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Ôn tập chương 4

1 650 30/12/2022


Xem thêm các chương trình khác: