Cho tam giác ABC có AB = 4, AC = 6

Lời giải Bài 72 trang 107 SBT Toán 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 543 05/12/2022


Giải SBT Toán 10 Cánh diều Bài ôn tập chương 4

Bài 72 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 4, AC = 6, BAC^=60°. Tính (làm tròn kết quả đến hàng đơn vị):

a) Độ dài cạnh BC và độ lớn góc B;

b) Bán kính đường tròn ngoại tiếp R;

c) Diện tích của tam giác ABC;

d) Độ dài đường cao xuất phát từ A;

e) AB.AC,AM.AC với M là trung điểm của BC.

Lời giải:

a) Độ dài cạnh BC và độ lớn góc B;

Xét tam giác ABC, có:

BC2 = AB2 + AC2 – 2AB.AC.cosBAC^

       = 42 + 62 – 2.4.6.cos60°

       = 42 + 62 – 24

       = 28

BC = 28.

Áp dụng định lí sin trong tam giác ABC ta được:

BCsinA=ACsinB

sinB=6.sin60°280,98

B^79°.

Vậy BC = 28 B^79°.

b) Áp dụng định lí sin trong tam giác, ta có:

BCsinA=2R

R=BC2sinA=282sin60°3.

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 3.

c) Áp dụng công thức tính diện tích tam giác, ta được:

SΔABC=12AB.AC.sinBAC^=12.4.6.sin60°=63đvdt

Vậy diện tích của tam giác ABC là 63 (đvdt).

d) Gọi AH là đường cao của tam giác kẻ từ đỉnh A

Ngoài ra diện tích tam giác ABC là:

SΔABC=12BC.AH=12.28.AH

Theo ý c) ta tính được diện tích tam giác là 63

Do đó ta có: 12.28.AH=63

AH=2.63284

Vậy độ dài đường cao xuất phát từ A là 4.

e) Ta có:

AB.AC=AB.AC.cosAB,AC=4.6.cos60°=12. 

Vì M là trung điểm của BC nên AM=12AB+AC

Khi đó:

AM.AC=12AB+AC.AC=12AB.AC+12.AC2=12.12+12.62=24

Vậy  AB.AC=12 AM.AC=24.

1 543 05/12/2022


Xem thêm các chương trình khác: