Sách bài tập Toán 10 Bài 4 (Cánh diều): Bất phương trình bậc nhất một ẩn
Với giải sách bài tập Toán 10 Bài 4: Bất phương trình bậc nhất một ẩn sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 4.
Giải sách bài tập Toán lớp 10 Bài 4: Bất phương trình bậc nhất một ẩn - Cánh diều
Giải SBT Toán 10 trang 56 Tập 1
Lời giải
Đáp án đúng là C
Xét bất phương trình – 2x2 + 3x < 0 là bất phương trình bậc hai một ẩn x. Do đó A sai.
Xét bất phương trình 0,5y2 – (y – 2) ≤ 0 ⇔ 0,5y2 – y + 2 ≤ 0 là bất phương trình bậc hai một ẩn y. Do đó B sai.
Xét bất phương trình x2 – 2xy – 3 ≥ 0 là bất phương trình bậc hai nhưng lại có hai ẩn x và y. Do đó C đúng.
Xét bất phương trình x2 – 3 ≥ 0 là bất phương trình bậc hai một ẩn x. Do đó D sai.
Bài 29 trang 56 SBT Toán 10 Tập 1: Tập nghiệm của bất phương trình – x2 + 3x + 18 ≥ 0 là:
Lời giải
Đáp án đúng là A
Xét f(x) = – x2 + 3x + 18 là một tam thức bậc hai có a = – 1 < 0 và ∆ = 32 – 4.(– 1).18 = 81 > 0.
Do đó f(x) có hai nghiệm phân biệt là x1 = – 3 và x2 = 6.
Theo định lí về dấu tam thức bậc hai, ta có:
f(x) > 0 khi x ∈ (– 3; 6);
f(x) < 0 khi x ∈ (–∞; – 3) ∪ (6; +∞);
Suy ra f(x) ≥ 0 khi x ∈ [– 3; 6].
Vậy tập nghiệm của bất phương trình là S = [– 3; 6].
Lời giải
+) Hình 18a):
Quan sát đồ thị hàm số, ta thấy:
Đồ thị hàm số nằm hoàn toàn phía dưới trục hoành với mọi x ∈ ℝ.
Do đó:
f(x) < 0 và f(x) ≤ 0 luôn đúng với mọi x ∈ ℝ.
f(x) > 0; f(x) ≥ 0 và vô nghiệm.
Vậy tập nghiệm của các bất phương trình f(x) > 0 và f(x) ≥ 0 là , tập nghiệm của bất phương trình f(x) < 0 và f(x) ≤ 0 là ℝ.
+) Hình 18b):
Quan sát đồ thị hàm số, ta thấy:
Với x ∈ (1; 3) hàm số nằm trên trục hoành hay f(x) > 0.
Với x < 1 hoặc x > 3 đồ thị hàm số nằm phía dưới trục hoành hay f(x) < 0.
Đồ thị hàm số cắt trục hoành tại x = 1 hoặc x = 3.
Do đó:
f(x) > 0 khi x ∈ (1; 3).
f(x) < 0 khi x ∈ (– ∞; 1) ∪ (3; +∞).
f(x) ≥ 0 khi x ∈ [1; 3].
f(x) ≤ 0 khi x ∈ (– ∞; 1] ∪ [3; +∞).
Vậy tập nghiệm của các bất phương trình f(x) > 0; f(x) < 0; f(x) ≥ 0; f(x) ≤ 0 lần lượt là (1; 3); (– ∞; 1) ∪ (3; +∞); [1; 3]; (– ∞; 1] ∪ [3; +∞).
+) Hình 18c):
Quan sát đồ thị hàm số, ta thấy:
Đồ thị hàm số cắt trục hoành tại x = 2.
Với x ≠ 2 hàm số nằm dưới trục hoành hay f(x) < 0.
Do đó:
f(x) > 0 vô nghiệm.
f(x) < 0 khi x ∈ ℝ \ {2}.
f(x) ≥ 0 khi x = 2.
f(x) ≤ 0 khi x ∈ ℝ.
Vậy tập nghiệm của các bất phương trình f(x) > 0; f(x) < 0; f(x) ≥ 0; f(x) ≤ 0 lần lượt là ; ℝ \ {2}; {2}; ℝ.
Bài 31 trang 56 SBT Toán 10 Tập 1: Giải các bất phương trình bậc hai sau:
Lời giải
a) Xét tam thức bậc hai f(x) = 3x2 – 8x + 5, có a = 3, ∆ = (– 8)2 – 4.3.5 = 4 > 0
Suy ra tam thức bậc hai có hai nghiệm x1 = 1 và x2 =.
Áp dụng định lí dấu của tam thức bậc hai, ta có:
f(x) > 0 khi x ∈ ;
f(x) < 0 khi x ∈ .
Suy ra 3x2 – 8x + 5 > 0 khi x ∈ .
Vậy tập nghiệm của bất phương trình 3x2 – 8x + 5 > 0 là .
b) Xét tam thức bậc hai g(x) = – 2x2 – x + 3, có a = – 2 < 0 và ∆ = (– 1)2 – 4.(– 2).3 = 25 > 0.
Do đó tam thức có hai nghiệm phân biệt x1 = 1 và x2 =.
Áp dụng định lí về dấu của tam thức bậc hai ta có:
g(x) > 0 khi x ∈ ;
g(x) < 0 khi x ∈ .
Suy ra – 2x2 – x + 3 ≤ 0 khi x ∈ .
Vậy tập nghiệm của bất phương trình đã cho là S = .
c) Xét tam thức bậc hai h(x) = 25x2 – 10x + 1, có a = 25 > 0 và ∆ = (– 10)2 – 4.25.1 = 0.
Do đó tam thức có nghiệm kép là x = .
Áp dụng định lí về dấu của tam thức bậc hai ta có:
h(x) > 0 khi x ≠ .
Suy ra 25x2 – 10x + 1 < 0 khi x ∈ .
Vậy tập nghiệm của bất phương trình đã cho là S = .
d) Xét tam thức bậc hai k(x) = – 4x2 + 5x + 9 , có a = – 4 < 0 và ∆ = 52 – 4.(– 4).9 = 169 > 0.
Do đó tam thức có hai nghiệm phân biệt là x1 = – 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai ta có:
k(x) < 0 khi x ∈ ;
k(x) > 0 khi x ∈ .
Suy ra – 4x2 + 5x + 9 ≥ 0 khi x ∈ .
Vậy tập nghiệm của bất phương trình đã cho là S = .
Giải SBT Toán 10 trang 57 Tập 1
Lời giải
Xét tam thức bậc hai f(x) = – 3x2 + 7x + 10, có a = – 3 < 0 và ∆ = 72 – 4.(– 3).10 = 169 > 0.
Do đó tam thức có hai nghiệm phân biệt là x1 = – 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai ta có:
f(x) < 0 khi x ∈ ;
f(x) > 0 khi x ∈ .
Suy ra tập nghiệm của bất phương trình – 3x2 + 7x + 10 ≥ 0 là S1 = .
Xét tam thức bậc hai g(x) = – 2x2 – 9x + 11, có a = – 2 < 0 và ∆ = (– 9)2 – 4.(– 2).11 = 169 > 0.
Do đó tam thức có hai nghiệm phân biệt là x1 = 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai ta có:
g(x) < 0 khi x ∈ ;
g(x) > 0 khi x ∈ .
Suy ra tập nghiệm của bất phương trình – 2x2 – 9x + 11 > 0 là S2 = .
Đặt S = S1 ∩ S2 = .
Ta có hình vẽ sau:
Vậy giao của hai tập nghiệm của hai bất phương trình trên là S = [ – 1; 1).
Bài 33 trang 57 SBT Toán 10 Tập 1: Tìm m để phương trình – x2 + (m + 2)x + 2m – 10 = 0 có nghiệm.
Lời giải
Xét phương trình – x2 + (m + 2)x + 2m – 10 = 0 có ∆ = (m + 2)2 – 4.(– 1).(2m – 10) = m2 + 12m – 36.
Để phương trình đã cho có nghiệm thì ∆ ≥ 0 ⇔ m2 + 12m – 36 ≥ 0
Xét tam thức bậc hai f(m) = m2 + 12m – 36, có a = 1, ∆m = 122 – 4.1.(– 36) = 288 > 0.
Do đó tam thức có hai nghiệm phân biệt m1 = và m1 = .
Áp dụng định lí về dấu của tam thức bậc hai ta có: f(m) ≥ 0 khi m ∈.
Vậy m ∈ thì phương trình đã cho có nghiệm.
Lời giải
Ta có hình vẽ mô phỏng quỹ đạo chuyển động của quả bóng như hình vẽ:
Vì quỹ đạo chuyển động là một đường thẳng parabol có dạng h = at2 + bt + c (a ≠ 0).
Một quả bóng được đá lên từ điểm A(0; 0,3) nên điểm A thuộc vào parabol, thay t = 0 và h = 0,3 vào đồ thị hàm số ta được: 0,3 = a.02 + b.0 + c ⇔ c = 0,3 (1).
Bóng đạt độ cao h = 8m sau t = 1 giây nên điểm có tọa độ (1; 8) thuộc vào parabol.
Thay t = 1 và h = 8 vào đồ thị hàm số ta được: 8 = a.12 + b.1 + c ⇔ a + b + c = 8 (2).
Bóng đạt độ cao h = 6m sau t = 2 giây nên điểm có tọa độ (2; 6) thuộc vào parabol.
Thay t = 2 và h = 6 vào đồ thị hàm số ta được: 6 = a.22 + b.2 + c ⇔ 4a + 2b + c = 6 (3).
Từ (1), (2) và (3) ta có hệ phương trình: .
Ta có phương trình parabol cần tìm là: h = – 4,85t2 + 12,55t + 0,3.
Để chiều cao lớn hơn 5 thì h > 5 ⇔ – 4,85t2 + 12,55t + 0,3 > 5
⇔ – 4,85t2 + 12,55t – 4,7 > 0
Xét tam thức bậc hai f(t) = – 4,85t2 + 12,55t – 4,7, có a = – 4,85, ∆ = 12,552 – 4.(– 4,85).(– 4,7) = 66,3225 > 0.
Suy ra tam thức có hai nghiệm phân biệt t1 ≈ 0,454 và t2 ≈ 2,133.
Áp dụng định lí về dấu của tam thức bậc hai ta được: f(t) > 0 hay – 4,85t2 + 12,55t – 4,7 > 0 khi t ∈ (0,454; 2,133).
Để chiều cao nhỏ hơn 7 thì h < 7 ⇔ – 4,85t2 + 12,55t + 0,3 < 7
⇔ – 4,85t2 + 12,55t – 6,7 < 0
Xét tam thức bậc hai g(t) = – 4,85t2 + 12,55t – 6,7, có a = – 4,85, ∆ = 12,552 – 4.(– 4,85).(– 6,7) = 27,5225 > 0.
Suy ra tam thức có hai nghiệm phân biệt t1 ≈ 0,753 và t2 ≈ 1,835.
Áp dụng định lí về dấu của tam thức bậc hai ta được: g(t) < 0 hay – 4,85t2 + 12,55t – 6,7 < 0 khi t ∈ (– ∞; 0,753) ∪ (1,835; +∞).
Để quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m thì t phải thuộc vào giao của hai tập (0,454; 2,133) hoặc (– ∞; 0,753) ∪ (1,835; +∞).
Ta có (0,454; 2,133) (– ∞; 0,753) ∪ (1,835; +∞) = (0,454; 0,753) ∪ (1,835; 2,133).
Vậy để quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m thì thuộc khoảng 0,454 giây đến 0,753 giây hoặc 1,835 giây đến 2,133 giây.
Lời giải
Viên đạn đang ở độ cao hơn 15m nghĩa là: > 15
Xét tam thức f(x) = , có a = và
∆ = > 0.
Do đó tam thức có hai nghiệm phân biệt x1 ≈ 2 720,76 và x2 ≈ 612,57.
Áp dụng định lí về dấu ta có: f(x) > 0 hay khi x ∈ (612,57; 2 720,76).
Vậy khi viên đạn đang ở độ cao hơn 15m thì có khoảng cách đến vị trí bắn trong khoảng 612,57 m đến 2 720,76 m.
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Bài 3: Dấu của tam thức bậc hai
Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Xem thêm tài liệu Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều