Tìm m để phương trình – x^2 + (m + 2)x + 2m – 10 = 0 có nghiệm

Lời giải Bài 33 trang 57 SBT Toán 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 475 05/12/2022


Giải SBT Toán 10 Cánh diều Bài 4: Bất phương trình bậc nhất một ẩn

Bài 33 trang 57 SBT Toán 10 Tập 1: Tìm m để phương trình – x2 + (m + 2)x + 2m – 10 = 0 có nghiệm.

Lời giải

Xét phương trình – x2 + (m + 2)x + 2m – 10 = 0 có ∆ = (m + 2)2 – 4.(– 1).(2m – 10) = m2 + 12m – 36.

Để phương trình đã cho có nghiệm thì ∆ ≥ 0 m2 + 12m – 36 ≥ 0

Xét tam thức bậc hai f(m) = m2 + 12m – 36, có a = 1, ∆m = 122 – 4.1.(– 36) = 288 > 0.

Do đó tam thức có hai nghiệm phân biệt m1 = 662 và m1 = 6+62.

Áp dụng định lí về dấu của tam thức bậc hai ta có: f(m) ≥ 0 khi m ;6626+62;+.

Vậy m ;6626+62;+ thì phương trình đã cho có nghiệm.

1 475 05/12/2022


Xem thêm các chương trình khác: