Sách bài tập Toán 10 Bài 3 (Cánh diều): Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
Với giải sách bài tập Toán 10 Bài 3: Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 3.
Giải sách bài tập Toán lớp 10 Bài 3: Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm - Cánh diều
Giải SBT Toán 10 trang 37 Tập 2
Bài 14 trang 37 SBT Toán 10 Tập 2:
Cho mẫu số liệu: 21 22 23 24 25
a) Khoảng biến thiên của mẫu số liệu trên là:
b) Khoảng tứ phân vị của mẫu số liệu trên là:
c) Phương sai của mẫu số liệu trên là:
d) Độ lệch chuẩn của mẫu số liệu trên là:
Lời giải:
a) Trong mẫu số liệu trên, số lớn nhất là 25 và số nhỏ nhất là 21.
Vậy khoảng biến thiên của mẫu số liệu trên là: R = xmax – xmin = 25 – 21 = 4.
Do đó ta chọn phương án D.
b) Mẫu số liệu trên đã được sắp xếp theo thứ tự không giảm.
Trung vị của mẫu số liệu trên là: Me = 23.
Trung vị của dãy 21; 22 là: .
Trung vị của dãy 24; 25 là: .
Suy ra Q1 = 21,5; Q2 = 23; Q3 = 24,5.
Do đó khoảng tứ phân vị của mẫu số liệu trên là: ∆Q = Q3 – Q1 = 24,5 – 21,5 = 3.
Vậy ta chọn phương án C.
c) Số trung bình cộng của mẫu số liệu trên là: .
Ta có (21 – 23)2 + (22 – 23)2 + (23 – 23)2 + (24 – 23)2 + (25 – 23)2 = 10.
Phương sai của mẫu số liệu trên là: .
Vậy ta chọn phương án B.
d) Độ lệch chuẩn của mẫu số liệu trên là: .
Vậy ta chọn phương án B.
Giải SBT Toán 10 trang 38 Tập 2
Bài 15 trang 38 SBT Toán 10 Tập 2:
Mẫu số liệu nhận được từ biểu đồ ở Hình 2 có khoảng biến thiên là bao nhiêu?
Lời giải:
Mẫu số liệu thống kê thu nhập bình quân đầu người/năm nhận được từ biểu đồ trên là:
423 138 1318 2366 2566 2715 2786
Trong mẫu số liệu trên, số lớn nhất là 2786 và số nhỏ nhất là 138.
Vậy khoảng biến thiên của mẫu số liệu trên là: R = xmax – xmin = 2786 – 138 = 2648.
Do đó ta chọn phương án D.
Bài 16 trang 38 SBT Toán 10 Tập 2:
Mẫu số liệu nhận được từ biểu đồ ở Hình 3 có khoảng tứ phân vị là bao nhiêu?
Lời giải:
Mẫu số liệu thống kê số lượt khách vào một cửa hàng trong ngày đầu khai trương nhận được từ biểu đồ trên là:
40 50 20 35 45
Sắp xếp mẫu số liệu trên theo thứ tự không giảm, ta được dãy:
20 35 40 45 50
Trung vị của mẫu số liệu trên là: Me = 40.
Trung vị của dãy 20; 35 là: .
Trung vị của dãy 45; 50 là: .
Vậy Q1 = 27,5; Q2 = 40; Q3 = 47,5.
Suy ra khoảng tứ phân vị của mẫu số liệu trên là: ∆Q = Q3 – Q1 = 47,5 – 27,5 = 20.
Do đó ta chọn phương án C.
Bài 17 trang 38 SBT Toán 10 Tập 2:
Cho mẫu số liệu: 1 11 13 15 17 21
a) Tìm khoảng biến thiên của mẫu số liệu trên.
b) Tìm khoảng tứ phân vị của mẫu số liệu trên.
c) Tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
d) Tìm giá trị bất thường của mẫu số liệu trên.
Lời giải:
a) Trong mẫu số liệu trên, số lớn nhất là 21 và số nhỏ nhất là 1.
Vậy khoảng biến thiên của mẫu số liệu trên là: R = xmax – xmin = 21 – 1 = 20.
b) Mẫu số liệu trên đã được sắp xếp theo thứ tự không giảm.
Trung vị của mẫu số liệu trên là: .
Trung vị của dãy 1; 11; 13 là: 11.
Trung vị của dãy 15; 17; 21 là 17.
Vậy Q1 = 11; Q2 = 14; Q3 = 17.
Do đó khoảng tứ phân vị của mẫu số liệu trên là: ∆Q = Q3 – Q1 = 17 – 11 = 6.
c) Số trung bình cộng của mẫu số liệu trên là: .
Ta có (1 – 13)2 + (11 – 13)2 + (13 – 13)2 + (15 – 13)2 + (17 – 13)2 + (21 – 13)2 = 232.
Phương sai của mẫu số liệu trên là: .
Độ lệch chuẩn của mẫu số liệu trên là: .
d) Ta có:
⦁ ;
⦁ .
Ta thấy 1 < 2.
Vậy 1 là giá trị bất thường của mẫu số liệu đã cho.
Bài 18 trang 38 SBT Toán 10 Tập 2:
a) Viết mẫu số liệu thống kê nhiệt độ nhận được từ bảng trên.
b) Tính số trung bình cộng, phương sai và độ lệch chuẩn của mẫu số liệu đó.
Lời giải:
a) Mẫu số liệu thống kê nhiệt độ nhận được từ bảng trên là:
23 25 26 27 27 27 27 21 19 18
b) Số trung bình cộng của mẫu số liệu trên là:
(°C)
Ta có (23 – 24)2 + (25 – 24)2 + (26 – 24)2 + (27 – 24)2 + (27 – 24)2 + (27 – 24)2
+ (27 – 24)2 + (21 – 24)2 + (19 – 24)2 + (18 – 24)2 = 112.
Phương sai của mẫu số liệu trên là: .
Độ lệch chuẩn của mẫu số liệu trên là: (°C).
Bài 19 trang 38 SBT Toán 10 Tập 2:
a) Viết mẫu số liệu thống kê kết quả thi ngoại ngữ của Dũng và Hoàng nhận được từ biểu đồ ở Hình 4.
b) Tìm khoảng biến thiên và khoảng tứ phân vị của mỗi mẫu số liệu đó.
Lời giải:
a) Mẫu số liệu thống kê kết quả thi ngoại ngữ của Dũng là:
8 9 7 9 7 8 8 7 9 (1)
Mẫu số liệu thống kê kết quả thi ngoại ngữ của Hoàng là:
6 10 8 8 7 9 6 9 8 (2)
b) Xét mẫu số liệu (1):
⦁ Trong mẫu số liệu (1), số điểm lớn nhất là 9 và số điểm thấp nhất là 7.
Do đó khoảng biến thiên của mẫu số liệu (1) là: R = xmax – xmin = 9 – 7 = 2.
⦁ Sắp xếp mẫu số liệu (1) theo thứ tự không giảm, ta được dãy:
7 7 7 8 8 8 9 9 9
Trung vị của mẫu số liệu trên là: 8.
Trung vị của dãy 7; 7; 7; 8 là: .
Trung vị của dãy 8; 9; 9; 9 là: .
Vì vậy Q1 = 7; Q2 = 8; Q3 = 9.
Do đó khoảng tứ phân vị của mẫu số liệu (1) là: ∆Q = Q3 – Q1 = 9 – 7 = 2.
Xét mẫu số liệu (2):
⦁ Trong mẫu số liệu (2), số điểm lớn nhất là 10 và số điểm thấp nhất là 6.
Do đó khoảng biến thiên của mẫu số liệu (1) là: R = xmax – xmin = 10 – 6 = 4.
⦁ Sắp xếp mẫu số liệu (2) theo thứ tự không giảm, ta được dãy:
6 6 7 8 8 8 9 9 10
Trung vị của mẫu số liệu trên là: 8.
Trung vị của dãy 6; 6; 7; 8 là: .
Trung vị của dãy 8; 9; 9; 10 là: .
Vì vậy Q1 = 6,5; Q2 = 8; Q3 = 9.
Do đó khoảng tứ phân vị của mẫu số liệu (2) là: ∆Q = Q3 – Q1 = 9 – 6,5 = 2,5.
Vậy ta có:
⦁ Khoảng biến thiên của mẫu số liệu (1) và (2) lần lượt là 2 và 4.
⦁ Khoảng tứ phân vị của mẫu số liệu (1) và (2) lần lượt là 2 và 2,5.
c) Gọi kết quả trung bình của bạn Dũng và bạn Hoàng lần lượt là . Ta có:
⦁ (điểm).
⦁ (điểm).
Gọi phương sai tương ứng với mẫu số liệu (1) và (2) lần lượt là . Ta có:
⦁ .
⦁ .
Độ lệch chuẩn của mẫu số liệu (1) là: .
Độ lệch chuẩn của mẫu số liệu (2) là: .
Do .
Nên bạn Dũng có kết quả thi ổn định hơn bạn Hoàng.
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều