Sách bài tập Toán 10 (Cánh diều) Bài ôn tập chương 3
Với giải sách bài tập Toán 10 Bài ôn tập chương 3 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài ôn tập chương 3.
Giải sách bài tập Toán lớp 10 Bài ôn tập chương 3 - Cánh diều
Giải SBT Toán 10 trang 61 Tập 1
Bài 45 trang 61 SBT Toán 10 Tập 1: Trong các hàm số sau, hàm số nào không là hàm số bậc hai?
Lời giải
Đáp án đúng là D
Xét hàm số y = – 5x2 + 6x có dạng ax2 + bx + c với a = – 5, b = 6 và c = 0. Do đó A sai.
Xét hàm số y = 3 – 2x2 = – 2x2 + 3 có dạng ax2 + bx + c với a = – 2, b = 0 và c = 3. Do đó B sai.
Xét hàm số y = – x(5x – 7) = – 5x2 + 7x có dạng ax2 + bx + c với a = – 5, b = 7 và c = 0. Do đó C sai.
Xét hàm số y = 0x2 + 6x – 5 có dạng ax2 + bx + c tuy nhiên a = 0 nên đây không là hàm số bậc hai. Do đó D đúng.
Bài 46 trang 61 SBT Toán 10 Tập 1: Tập nghiệm của bất phương trình – 5x2 + 6x + 11 ≤ 0 là:
Lời giải
Đáp án đúng là D
Xét tam thức bậc hai f(x) = – 5x2 + 6x + 11 với a = – 5, ∆ = 62 – 4.(– 5).11 = 256 > 0.
Suy ra tam thức f(x) có hai nghiệm phân biệt x1 = – 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai, ta có: f(x) < 0 khi x ∈ .
Do đó bất phương trình – 5x2 + 6x + 11 ≤ 0 khi x ∈ .
Vậy tập nghiệm của bất phương trình là S = .
Giải SBT Toán 10 trang 62 Tập 1
Bài 47 trang 62 SBT Toán 10 Tập 1: Cho hàm số f(x) = .
a) Điểm nào sau đây thuộc đồ thị hàm số trên:
A(0; 0), B(– 1; 1), C(2 021; 1), D(2 022; 2)?
b) Chỉ ra hai điểm thuộc đồ thị hàm số trên có tung độ bằng 2.
c) Chỉ ra điểm thuộc đồ thị hàm số trên có hoành độ bằng – 2 022.
Lời giải
a) Tập xác định của hàm số đã cho là D = ℝ\{0}.
+) Điểm A(0; 0) có x = 0 không thỏa mãn điều kiện xác định nên không thuộc đồ thị hàm số.
+) Điểm B(– 1; 1) có x = – 1 và y = 1
Vì x = – 1 < 0 nên y = f(x) = 1 (thỏa mãn). Do đó điểm B thuộc đồ thị hàm số đã cho.
+) Điểm C(2 021; 1) có x = 2 021 và y = 1
Vì x = 2 021 > 0 nên y = f(x) = 2 ≠ 1. Do đó điểm C không thuộc đồ thị hàm số đã cho.
+) Điểm D(2 022; 2) có x = 2 022 và y = 2
Vì x = 2 022 > 0 nên y = f(x) = 2 (thỏa mãn). Do đó điểm D thuộc đồ thị hàm số đã cho.
Vậy có điểm B và điểm D thuộc đồ thị hàm số đã cho.
b) Để điểm có tung độ bằng 2 thì hoành độ của điểm đó phải thỏa mãn x > 0. Do đó ta chọn được được 2 điểm là (100; 2) và (67; 2).
c) Điểm có hoành độ x = – 2 022 < 0 nên tung độ y = 1. Do đó ta có điểm cần tìm là (– 2 022; 1).
Bài 48 trang 62 SBT Toán 10 Tập 1: Cho hàm số y = f(x) có đồ thị ở Hình 24.
a) Chỉ ra khoảng đồng biến và khoảng nghịch biến của hàm số y = f(x).
b) Nêu tung độ giao điểm của đồ thị hàm số y = f(x) với trục Oy.
Lời giải
a) Dựa vào đồ thị hàm số ta thấy:
Với x < 0 hoặc x > 2 thì đồ thị hàm số đi lên. Do đó hàm số đồng biến trên khoảng (– ∞; 0) ∪ (2; +∞).
Với 0 < x < 2 thì đồ thị hàm số đi xuống. Do đó hàm số nghịch biến trên khoảng (0; 2).
Vậy hàm số đồng biến trên khoảng (– ∞; 0) ∪ (2; +∞) và hàm số nghịch biến trên khoảng (0; 2).
b) Đồ thị hàm số giao với trục tung tại điểm có tung độ bằng 2.
Lời giải
Sau 1 năm người này nợ ngân hàng số tiền là:
100 + r%.100 = 100.(1 + r%) (triệu đồng).
Sau 2 năm người này phải trả ngân hàng số tiền là:
100.(1 + r%) + r%.100.(1 + r%) = 100(1 + r%)(1 + r%) = 100(1 + r%)2 (triệu đồng).
Vậy sau 2 năm số tiền người này phải trả cho ngân hàng là 100(1 + r%)2 (triệu đồng).
Bài 50 trang 62 SBT Toán 10 Tập 1: Vẽ đồ thị của mỗi hàm số sau:
Lời giải
a) Xét hàm số y = 2x2 – 8x + 1, có a = 2 > 0, ∆ = (– 8)2 – 4.1.2 = 56 > 0.
- Điểm đỉnh:
- Trục đối xứng là x = 2.
- Vì a = 2 > 0 thì đồ thị hàm số có bề lõm hướng lên trên.
- Đồ thị hàm số cắt trục tung tại điểm có tọa độ (0; 1).
- Điểm đối xứng với điểm (0; 1) qua trục đối xứng là (4; 1).
- Đồ thị cắt trục hoành tại hai điểm có tọa độ và
Ta có hình vẽ sau:
b) Xét hàm số y = – x2 + 4x – 3, có a = – 1 < 0, ∆ = 42 – 4.(–1).(–3) = 4 > 0.
- Điểm đỉnh:
- Trục đối xứng là x = 2.
- Vì a = – 1 < 0 thì đồ thị hàm số có bề lõm hướng xuống dưới.
- Đồ thị hàm số cắt trục tung tại điểm có tọa độ (0; – 3).
- Điểm đối xứng với điểm (0; – 3) qua trục đối xứng là (4; – 3).
- Đồ thị cắt trục hoành tại hai điểm có tọa độ (1; 0) và (3; 0)
Ta có hình vẽ sau:
Bài 51 trang 62 SBT Toán 10 Tập 1: Giải các bất phương trình bậc hai sau:
Lời giải
a) Xét tam thức bậc hai f(x) = 4x2 – 9x + 5, có a = 4 > 0 và ∆ = (– 9)2 – 4.4.5 = 1 > 0.
Suy ra tam thức có hai nghiệm x1 = 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai, ta được:
f(x) < 0 khi x ∈ .
Suy ra 4x2 – 9x + 5 ≤ 0 khi x ∈ .
Vậy tập nghiệm của bất phương trình S = .
b) Xét tam thức bậc hai f(x) = – 3x2 – x + 4, có a = – 3 < 0 và ∆ = (– 1)2 – 4.(– 3).4 = 25 > 0.
Suy ra tam thức có hai nghiệm x1 = 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai, ta được:
f(x) > 0 khi x ∈ .
Suy ra – 3x2 – x + 4 > 0 khi x ∈ .
Vậy tập nghiệm của bất phương trình S = .
c) Xét tam thức bậc hai f(x) = 36x2 – 12x + 1, có a = 36 > 0 và ∆ = (– 12)2 – 4.36.1 =
0.
Suy ra tam thức có nghiệm kép x = .
Áp dụng định lí về dấu của tam thức bậc hai, ta được:
f(x) > 0 khi x ≠ .
Suy ra 36x2 – 12x + 1 > 0 khi x ≠.
Vậy tập nghiệm của bất phương trình S = .
d) Xét tam thức bậc hai f(x) = – 7x2 + 5x + 2 , có a = – 7 > 0 và ∆ = 52 – 4.(– 7).2 = 81 > 0.
Suy ra tam thức có hai nghiệm x1 = 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai, ta được:
f(x) < 0 khi x ∈ .
Suy ra – 7x2 + 5x + 2 < 0 khi x ∈ .
Vậy tập nghiệm của bất phương trình S = .
Bài 52 trang 62 SBT Toán 10 Tập 1: Giải các phương trình sau:
Lời giải
a)
⇔ (điều kiện – x – 4 ≥ 0 ⇔ x ≤ – 4)
⇔ 8 – x = x2 + 8x + 16
⇔ x2 + 9x + 8 = 0
⇔ (x + 1)(x + 8) = 0
⇔ x = – 1 (không thỏa mãn) hoặc x = – 8 (thỏa mãn)
Vậy tập nghiệm của phương trình là S = {– 8}.
b)
⇔ (điều kiện – 3x + 4 ≥ 0 ⇔ x ≤ )
⇔ 3x2 – 5x + 2 = 9x2 – 24x + 16
⇔ 6x2 – 19x + 14 = 0
⇔ x = 2 (không thỏa mãn) hoặc x = (thỏa mãn)
Vậy tập nghiệm của phương trình là S = .
b) Quãng đường x (km) có phải là hàm số của số tiền phải trả y (đồng) không? Giải thích.
c) Tính số tiền bạn Quân phải trả khi đi taxi hãng trên với quãng đường 20km.
Lời giải
a) Dựa vào bảng ta có số ứng với mỗi quãng đường x ta sẽ xác định được duy nhất một giá trị của y. Do đó số tiền phải trả y (đồng) có phải hàm số của quãng đường x (km).
Dựa vào bảng trên, ta có công thức tính y theo x là:
.
b) Ta thấy với giá trị y = 5 000 đồng ta xác định được rất nhiều giá trị của x thỏa mãn 0 < x ≤ 0,3. Do đó x không phải là hàm số của y.
c) Ta có x = 20 thỏa mãn 10 < x ≤ 25.
Khi đó theo công thức xác định của hàm số y theo x ta có y = 17 600.
Số tiền bạn Quân phải trả khi đi taxi hãng trên với quãng đường 20 km là:
17 600.20 = 352 000 (đồng)
Vậy Quân phải trả 352 000 đồng cho hãng taxi trên.
Giải SBT Toán 10 trang 63 Tập 1
a) Xác định độ cao của trụ cầu so với mặt cầu theo đơn vị feet.
Lời giải
Đặt hệ trục như hình vẽ dưới đây:
a) Độ cao của trụ cầu bên trái chính là tung độ của điểm giao giữa trụ cầu (trục tung) và dây treo (parabol) là điểm A.
Thay x = 0 vào h(x) = , ta được h(0) = = 500.
Vậy chiều cao của trụ cầu bên trái là 500 (feet).
b) Trụ cầu bên phải có chiều cao bằng trụ cầu bên trái và bằng 500m. Do đó tung độ điểm B là yB = 500.
Vì B cũng thuộc vào parabol nên thay yB = 500 vào h(x) = , ta được:
500 =
⇔ x = 0 hoặc x = 4200.
Vì xB > 0 nên xB = 4200.
Vậy khoảng cách giữa hai trụ cầu là 4200 (feet).
Lời giải
Đặt hình chữ nhật ABCD là phần trong của khung, hình chữ nhật MNPQ là khung ảnh hình chữ nhật như hình vẽ:
Chiều dài hình chữ nhật MNPQ là: x + 11 + x = 2x + 11 (cm).
Chiều rộng hình chữ nhật MNPQ là: x + 6 + x = 2x + 6 (cm).
Diện tích hình chữ nhật MNPQ là: (2x + 11)(2x + 6) = 4x2 + 34x + 66 (cm2).
Diện tích của hình chữ nhật ABCD là: 6.11 = 66 (cm2).
Diện tích của viền khung ảnh là: 4x2 + 34x + 66 – 66 = 4x2 + 34x (cm2).
Vì diện tích của viền khung ảnh không vượt quá 38 cm2 nên ta có:
4x2 + 34x ≤ 38 ⇔ 4x2 + 34x – 38 ≤ 0
Xét tam thức f(x) = 4x2 + 34x – 38, có a = 4 > 0 và ∆ = 342 – 4.4.(– 38) = 1 764 > 0.
Suy ra tam thức f(x) có hai nghiệm phân biệt x1 = 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai, ta có: f(x) < 0 khi x ∈ .
Do đó bất phương trình 4x2 + 34x – 38 ≤ 0 khi x ∈ .
Mà x > 0 nên ta có 0 < x ≤ 1 thì thỏa mãn 4x2 + 34x – 38 ≤ 0.
Vậy độ rộng viền khung ảnh lớn nhất là 1 xăng – ti – mét.
Lời giải
Đặt tọa độ các điểm như hình vẽ:
Ta có AD = x nên x > 0
Xét tam giác BHC vuông tại H, có:
BC2 = BH2 + CH2 (định lí py – ta – go)
BC2 = 42 + (6 – x)2
BC2 = 16 + 36 – 12x + x2
BC2 = x2 – 12x + 52
BC =
Xét tam giác AKD vuông tại K, có:
AD2 = AK2 + KD2 (định lí py – ta – go)
AD2 = 22 + x2
AD2 = x2 + 4
AD =
Để vị trí đặt chân cầu sao cho khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A ta có BC = 2AD
Hay
Điều kiện x2 + 4 ≥ 0 luôn đúng với mọi x.
⇔ x2 – 12x + 52 = 4(x2 + 4)
⇔ x2 – 12x + 52 = 4x2 + 16
⇔ 3x2 + 12x – 36 = 0
⇔ x = 2 (thỏa mãn) hoặc x = – 6 (không thỏa mãn)
Vậy x = 2 thỏa mãn yêu cầu bài toán.
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Bài 3: Dấu của tam thức bậc hai
Bài 4: Bất phương trình bậc nhất một ẩn
Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Xem thêm tài liệu Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều