Cho hàm số f(x) = 1 khi x<0 và 2 khi x>0

Lời giải Bài 47 trang 62 SBT Toán 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 537 05/12/2022


Giải SBT Toán 10 Cánh diều Bài ôn tập chương 3

Bài 47 trang 62 SBT Toán 10 Tập 1: Cho hàm số f(x) = 1   khi  x<02  khix>0.

a) Điểm nào sau đây thuộc đồ thị hàm số trên:

A(0; 0), B(– 1; 1), C(2 021; 1), D(2 022; 2)?

b) Chỉ ra hai điểm thuộc đồ thị hàm số trên có tung độ bằng 2.

c) Chỉ ra điểm thuộc đồ thị hàm số trên có hoành độ bằng – 2 022.

Lời giải

a) Tập xác định của hàm số đã cho là D = ℝ\{0}.

+) Điểm A(0; 0) có x = 0 không thỏa mãn điều kiện xác định nên không thuộc đồ thị hàm số.

+) Điểm B(– 1; 1) có x = – 1 và y = 1

Vì x = – 1 < 0 nên y = f(x) = 1 (thỏa mãn). Do đó điểm B thuộc đồ thị hàm số đã cho.

+) Điểm C(2 021; 1) có x = 2 021 và y = 1

Vì x = 2 021 > 0 nên y = f(x) = 2 ≠ 1. Do đó điểm C không thuộc đồ thị hàm số đã cho.

+) Điểm D(2 022; 2) có x = 2 022 và y = 2

Vì x = 2 022 > 0 nên y = f(x) = 2 (thỏa mãn). Do đó điểm D thuộc đồ thị hàm số đã cho.

Vậy có điểm B và điểm D thuộc đồ  thị hàm số đã cho.

b) Để điểm có tung độ bằng 2 thì hoành độ của điểm đó phải thỏa mãn x > 0. Do đó ta chọn được được 2 điểm là (100; 2) và (67; 2).

c) Điểm có hoành độ x = – 2 022 < 0 nên tung độ y = 1. Do đó ta có điểm cần tìm là (– 2 022; 1).

1 537 05/12/2022


Xem thêm các chương trình khác: