Giải SBT Toán 10 trang 57 Tập 1 Cánh diều

Với Giải SBT Toán 10 trang 57 Tập 1 trong Bài 4: Bất phương trình bậc nhất một ẩn Toán lớp 10 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 57.

1 750 23/09/2022


Giải SBT Toán 10 trang 57 Tập 1 Cánh diều

Bài 32 trang 57 SBT Toán 10 Tập 1: Tìm giao các tập nghiệm của hai bất phương trình – 3x2 + 7x + 10 ≥ 0 và – 2x2 – 9x + 11 > 0.

Lời giải

Xét tam thức bậc hai f(x) =  – 3x2 + 7x + 10, có a = – 3 < 0 và ∆ = 72 – 4.(– 3).10 = 169 > 0.

Do đó tam thức có hai nghiệm phân biệt là x1 = – 1 và x2 = 103.

Áp dụng định lí về dấu của tam thức bậc hai ta có:

f(x) < 0 khi x ;1103;+;

f(x) > 0 khi x 1;103.

Suy ra tập nghiệm của bất phương trình – 3x2 + 7x + 10 ≥ 0 là S1 = 1;103.

Xét tam thức bậc hai g(x) =  – 2x2 – 9x + 11, có a = – 2 < 0 và ∆ = (– 9)2 – 4.(– 2).11 = 169 > 0.

Do đó tam thức có hai nghiệm phân biệt là x1 = 1 và x2 = 112.

Áp dụng định lí về dấu của tam thức bậc hai ta có:

g(x) < 0 khi x ;1121;+;

g(x) > 0 khi x 112;1.

Suy ra tập nghiệm của bất phương trình – 2x2 – 9x + 11 > 0 là S2 = 112;1.

Đặt S = S1 ∩ S2 = 1;103112;1.

Ta có hình vẽ sau:

Sách bài tập Toán 10 Bài 4: Bất phương trình bậc nhất một ẩn - Cánh diều (ảnh 1)

Vậy giao của hai tập nghiệm của hai bất phương trình trên là S = [ – 1; 1).

Bài 33 trang 57 SBT Toán 10 Tập 1: Tìm m để phương trình – x2 + (m + 2)x + 2m – 10 = 0 có nghiệm.

Lời giải

Xét phương trình – x2 + (m + 2)x + 2m – 10 = 0 có ∆ = (m + 2)2 – 4.(– 1).(2m – 10) = m2 + 12m – 36.

Để phương trình đã cho có nghiệm thì ∆ ≥ 0 m2 + 12m – 36 ≥ 0

Xét tam thức bậc hai f(m) = m2 + 12m – 36, có a = 1, ∆m = 122 – 4.1.(– 36) = 288 > 0.

Do đó tam thức có hai nghiệm phân biệt m1 = 662 và m1 = 6+62.

Áp dụng định lí về dấu của tam thức bậc hai ta có: f(m) ≥ 0 khi m ;6626+62;+.

Vậy m ;6626+62;+ thì phương trình đã cho có nghiệm.

Bài 34 trang 57 SBT Toán 10 Tập 1: Xét hệ tọa độ Oth trong mặt phẳng, trong đó trục Ot biểu thị thời gian t (tính bằng giây) và trục Oh biểu thị độ cao h (tính bằng mét). Một quả bóng được đá lên từ điểm A(0; 0,3) và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 8m sau 1 giây và đạt độ cao 6m sau 2 giây. Trong khoảng thời gian nào (tính bằng giây) thì quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m (làm tròn kết quả đến hàng phần nghìn).

Lời giải

Ta có hình vẽ mô phỏng quỹ đạo chuyển động của quả bóng như hình vẽ:

Sách bài tập Toán 10 Bài 4: Bất phương trình bậc nhất một ẩn - Cánh diều (ảnh 1)

Vì quỹ đạo chuyển động là một đường thẳng parabol có dạng h = at2 + bt + c (a ≠ 0).

Một quả bóng được đá lên từ điểm A(0; 0,3) nên điểm A thuộc vào parabol, thay t = 0 và h = 0,3 vào đồ thị hàm số ta được: 0,3 = a.02 + b.0 + c c = 0,3 (1).

Bóng đạt độ cao h = 8m sau t = 1 giây nên điểm có tọa độ (1; 8) thuộc vào parabol.

Thay t = 1 và h = 8 vào đồ thị hàm số ta được: 8 = a.12 + b.1 + c a + b + c = 8 (2).

Bóng đạt độ cao h = 6m sau t = 2 giây nên điểm có tọa độ (2; 6) thuộc vào parabol.

Thay t = 2 và h = 6 vào đồ thị hàm số ta được: 6 = a.22 + b.2 + c 4a + 2b + c = 6 (3).

Từ (1), (2) và (3) ta có hệ phương trình: c=0,3a+b+c=84a+2b+c=6c=0,3a=4,85b=12,55.

Ta có phương trình parabol cần tìm là: h = – 4,85t2 + 12,55t + 0,3.

Để chiều cao lớn hơn 5 thì h > 5 – 4,85t2 + 12,55t + 0,3 > 5

– 4,85t2 + 12,55t – 4,7 > 0

Xét tam thức bậc hai f(t) = – 4,85t2 + 12,55t – 4,7, có a = – 4,85, ∆ = 12,552 – 4.(– 4,85).(– 4,7) = 66,3225 > 0.

Suy ra tam thức có hai nghiệm phân biệt t1 ≈ 0,454 và t2 ≈ 2,133.

Áp dụng định lí về dấu của tam thức bậc hai ta được: f(t) > 0 hay – 4,85t2 + 12,55t – 4,7 > 0 khi t (0,454; 2,133).

Để chiều cao nhỏ hơn 7 thì h < 7 – 4,85t2 + 12,55t + 0,3 < 7

– 4,85t2 + 12,55t – 6,7 < 0

Xét tam thức bậc hai g(t) = – 4,85t2 + 12,55t – 6,7, có a = – 4,85, ∆ = 12,552 – 4.(– 4,85).(– 6,7) = 27,5225 > 0.

Suy ra tam thức có hai nghiệm phân biệt t1 ≈ 0,753 và t2 ≈ 1,835.

Áp dụng định lí về dấu của tam thức bậc hai ta được: g(t) < 0 hay – 4,85t2 + 12,55t – 6,7 < 0 khi t (– ∞; 0,753) (1,835; +∞).

Để quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m thì t phải thuộc vào giao của hai tập (0,454; 2,133) hoặc (– ∞; 0,753) (1,835; +∞).

Ta có (0,454; 2,133)  (– ∞; 0,753) (1,835; +∞) = (0,454; 0,753) (1,835; 2,133).

Vậy để quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m thì thuộc khoảng 0,454 giây đến 0,753 giây hoặc 1,835 giây đến 2,133 giây.

Bài 35 trang 57 SBT Toán 10 Tập 1: Một tình huống trong huấn luyện pháo binh được mô tả như sau: Trong mặt phẳng tọa độ Oxy (đơn vị trên hai trục tính theo mét), một viên đạn được bắn từ vị trí O(0; 0) theo quỹ đạo là đường parabol y = 91000000x2+3100x. Tìm khoảng cách theo trục hoành của viên đạn so với vị trí bắn khi viên đạn đang ở độ cao hơn 15m (làm tròn kết quả đến hàng phần trăm theo đơn vị mét).

Lời giải

Viên đạn đang ở độ cao hơn 15m nghĩa là: 91000000x2+3100x > 15

91000000x2+3100x15>0 

Xét tam thức f(x) = 91000000x2+3100x15, có a = 91  000  000 

∆ = 310024.91  000  000.15=925000 > 0.

Do đó tam thức có hai nghiệm phân biệt x1 ≈ 2 720,76 và x2 ≈ 612,57.

Áp dụng định lí về dấu ta có: f(x) > 0 hay 91000000x2+3100x>15 khi x (612,57; 2 720,76).

Vậy khi viên đạn đang ở độ cao hơn 15m thì có khoảng cách đến vị trí bắn trong khoảng 612,57 m đến 2 720,76 m.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Giải SBT Toán 10 trang 56 Tập 1

1 750 23/09/2022


Xem thêm các chương trình khác: