Cho tam giác ABC cân tại A, hai điểm D, E nằm trên đường thẳng BC, D nằm giữa B và C, C nằm giữa D và E

Lời giải Bài 9.2 trang 48 SBT Toán 7 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

1 1,617 02/01/2023


Giải SBT Toán 7 Kết nối tri thức Bài 31: Quan hệ giữa góc và cạnh đối diện trong một tam giác

Bài 9.2 trang 48 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A, hai điểm D, E nằm trên đường thẳng BC, D nằm giữa B và C, C nằm giữa D và E. Chứng minh AD < AC < AE.

Lời giải:

Sách bài tập Toán 7 Bài 31 (Kết nối tri thức): Quan hệ giữa góc và cạnh đối diện trong một tam giác  (ảnh 1)

Do trong một tam giác cân, hai góc của đáy luôn bé hơn 90º nên suy ra ACB^  là góc nhọn.

ACE^  kề bù với ACB^  nên suy ra ACE^  là góc tù.

Xét tam giác ACE có ACE^  là góc tù nên cạnh đối diện với ACE^  là cạnh AE là cạnh lớn nhất.

Suy ra AE > AC (*)

Mà tam giác ABC cân tại A nên AB = AC và ABC^=ACB^ .

Lại có:

Xét tam giác ABC có:  BAC^+ABC^+ACB^=180°

Suy ra BAC^=180°2ABC^  (1)

Xét tam giác ABD có:  BAD^+ABD^+ADB^=180°

Suy ra BAD^=180°ABD^ADB^  (2)

Mà D nằm giữa B và C nên suy ra BAD^<BAC^  (3)

Từ (1), (2) và (3) ta suy ra: 180°ABD^ADB^<180°2ABC^

Hay ABC^+ADB^>2ABC^

Do đó ADB^>ABC^ .

Áp dụng định lí 2 ta được AB > AD

Mà AB = AC (cmt) nên suy ra AC > AD (**)

Từ (*) và (**) nên suy ra AE > AC > AD (đpcm).

1 1,617 02/01/2023


Xem thêm các chương trình khác: