Cho hình chóp S.ABCD. Gọi alpha 1, alpha2, alpha3, alpha4 lần lượt là góc giữa các đường thẳng SA, SB, SC

Lời giải Bài 31 trang 100 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 398 14/11/2023


Giải SBT Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 31 trang 100 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD. Gọi α1, α2, α3, α4 lần lượt là góc giữa các đường thẳng SA, SB, SC, SD và mặt phẳng (ABCD). Chứng minh rằng:

SA = SB = SC = SD ⇔ α1 = α2 = α3 = α4.

Lời giải:

Cho hình chóp S.ABCD. Gọi α1, α2, α3, α4 lần lượt là góc giữa các đường thẳng SA, SB, SC, SD và mặt phẳng (ABCD)

Gọi O là hình chiếu của S trên (ABCD) hay SO ⊥ (ABCD).

Mà OA, OB, OC, OD đều nằm trên (ABCD) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC, SO ⊥ OD.

Suy ra: bốn tam giác SAO, SBO, SCO, SDO vuông tại O nên các góc SAO^, SBO^, SCO,^SDO^ đều lớn hơn 0° và nhỏ hơn 90°.

Vì O là hình chiếu của S trên (ABCD), ta suy ra: α1=SAO^ và 0° < α1 < 90°.

Xét tam giác SAO vuông tại O có: sinα1=sinSAO^=SOSA.

Chứng minh tương tự, ta cũng có:

· sinα2=sinSBO^=SOSB (0° < α2 < 90°).

· sinα3=sinSCO^=SOSC (0° < α3 < 90°).

·sinα4=sinSDO^=SOSD (0° < α4 < 90°).

Như vậy: SA = SB = SC = SD SOSA=SOSB=SOSC=SOSD

⇔ sinα1 = sinα2 = sinα3 = sinα4

⇔ α1 = α2 = α3 = α4 (vì 0° < α1 < 90°; 0° < α2 < 90°; 0° < α3 < 90°; 0° < α4 < 90°)

Vậy SA = SB = SC = SD ⇔ α1 = α2 = α3 = α4.

1 398 14/11/2023


Xem thêm các chương trình khác: