Cho hình chóp S.ABC có SA vuông góc (ABC). Gọi I là hình chiếu của A trên đường thẳng BC

Lời giải Bài 26 trang 99 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 331 14/11/2023


Giải SBT Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 26 trang 99 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi I là hình chiếu của A trên đường thẳng BC, α là góc giữa đường thẳng SI và mặt phẳng (ABC), β là số đo nhị diện [S, BC, A]. Phát biểu nào sau đây đúng?

A. α = 90° – β;

B. α = 180° – β;

C. α = 90° + β;

D. α = β.

Lời giải:

Đáp án đúng là: D

Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi I là hình chiếu của A trên đường thẳng BC

Do SA ⊥ (ABC) nên hình chiếu của S trên (ABC) là điểm A.

Suy ra: Góc góc giữa SI và (ABC) chính là SIA^, tức là α=SIA^>. (1)

Ta có: SA ⊥ (ABC), BC ⊂ (ABC) nên SA ⊥ BC.

Ta có: BC ⊥ SA, BC ⊥ AI (gt) và AI ∩ SA = A trong (SAI).

Suy ra: BC ⊥ (SAI) nên SI ⊥ BC (vì SI ⊂ (SAI)).

Ta thấy: SI ⊥ BC, AI ⊥ BC và SI ∩ AI = I ∈ BC nên SIA^> chính là góc phẳng nhị diện của góc nhị diện [S, BC, A], tức là β=SIA^. (2)

Từ (1) và (2) ta có: α = β.

1 331 14/11/2023


Xem thêm các chương trình khác: