Cho hình ABCD (AB // DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC, BC theo thứ tự

Lời giải Bài 4.5 trang 48 SBT Toán 8 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập SBT Toán 8.

1 525 19/08/2023


Giải SBT Toán 8 Bài 15: Định lí Thalès trong tam giác

Bài 4.5 trang 48 SBT Toán 8 Tập 1: Cho hình ABCD (AB // DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC, BC theo thứ tự tại M, I, N. Chứng minh rằng:

a) AMMD=BNNC;

b) AMAD+CNCB=1.

Lời giải:

Cho hình ABCD (AB // DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC

a) Xét tam giác ADC, MI // DC nên theo định lí Thalès ta có: AMMD=AIIC.

Xét tam giác ABC, IN // AB nên theo định lí Thalès ta có: AIIC=BNNC.

Từ đó, suy ra AMMD=BNNC.

b) Xét tam giác ADC, MI // DC nên theo định lí Thalès ta có: AMAD=AIAC.

Xét tam giác ABC, IN // AB nên theo định lí Thalès ta có: CNCB=CICA.

Khi đó AMAD+CNCB=AIAC+CICA=AI+CICA=ACCA=1.

1 525 19/08/2023


Xem thêm các chương trình khác: