Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Lời giải Bài 3 trang 88 Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 297 26/12/2023


Giải Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3 trang 88 Toán 11 Tập 2: Cho tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của các tam giác BCD, ACD (Hình 31). Chứng minh rằng:

a) CD ⊥ (ABH);

b) CD ⊥ (ABK);

c) Ba đường thẳng AK, BH, CD cùng đi qua một điểm.

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: AB ⊥ (BCD), CD ⊂ (BCD) nên AB ⊥ CD.

Do H là trực tâm của tam giác BCD nên BH ⊥ CD.

Ta có: CD ⊥ AB, CD ⊥ BH và AB ∩ BH = B trong (ABH).

Từ đó ta có: CD ⊥ (ABH).

b) Do K là trực tâm của tam giác ACD nên AK ⊥ CD.

Ta có: CD ⊥ AB, CD ⊥ AK và AB ∩ AK = A trong (ABK).

Từ đó ta có: CD ⊥ (ABK).

c) Theo tính chất “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước” nên có duy nhất một mặt phẳng đi qua điểm A và vuông góc với CD.

Mà CD ⊥ (ABH), CD ⊥ (ABK).

Suy ra (ABH) ≡ (ABK).

Do: H là trực tâm của tam giác BCD nên BH giao với CD tại một điểm I;

K là trực tâm của tam giác ACD nên AK giao với CD tại một điểm I’.

Mà CD cắt (ABHK) tại một điểm.

Do đó I và I’ trùng nhau hay AK, BH, CD cùng đi qua một điểm.

1 297 26/12/2023


Xem thêm các chương trình khác: