Giải Toán 12 trang 11 Tập 1 Chân trời sáng tạo

Với giải bài tập Toán 12 trang 11 Tập 1 trong Bài 1: Tính đơn diệu và cực trị của hàm số sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 12 trang 11 Tập 1.

1 108 10/06/2024


Giải Toán 12 trang 11 Tập 1

Thực hành 4 trang 11 Toán 12 Tập 1: Tìm các điểm cực trị của hàm số y = f(x) có đồ thị cho ở Hình 8

Giải SGK Toán 12 Bài 1 (Chân trời sáng tạo): Tính đơn diệu và cực trị của hàm số (ảnh 8)

Lời giải:

Hàm số y = f (x) có:

x = 5 là điểm cực đại vì f (x) < f(5) với mọi x(3;7){5}, ycd=f(5)=5

x = 3 là điểm cực tiểu vì f(x) > f(3) với mọi x(1;5){3}, yct=f(3)=2

x=7 là điểm cực tiểu vì f(x) > f(7) với mọi x(5;9){7}, yct=f(7)=1

Hoạt động khám phá 3 trang 11 Toán 12 Tập 1: Đồ thị của hàm số y={x2khix12xkhix>1 được cho ở Hình 9.

Giải SGK Toán 12 Bài 1 (Chân trời sáng tạo): Tính đơn diệu và cực trị của hàm số (ảnh 9)

a) Tìm điểm cực đại và điểm cực tiểu của hàm số.

b) Tại x = 1, hàm số có đạo hàm không?

c) Thay mỗi dấu ? bằng kí hiệu (+, –) thích hợp để hoàn thành bảng biến thiên dưới đây. Nhận xét về dấu của y' khi x đi qua điểm cực đại và điểm cực tiểu.

Giải SGK Toán 12 Bài 1 (Chân trời sáng tạo): Tính đơn diệu và cực trị của hàm số (ảnh 10)

Lời giải:

a) Hàm số y = f (x) có:

x = 1 là điểm cực đại vì f (x) < f(1) với mọi x(0;+){0}

x = 0 là điểm cực tiểu vì f(x) > f(0) với mọi x(+;1){0}

b) Tại x = 1, hàm số không có đạo hàm vì đồ thị bị gấp khúc

c)

Giải SGK Toán 12 Bài 1 (Chân trời sáng tạo): Tính đơn diệu và cực trị của hàm số (ảnh 11)

Nhận xét: Khi đi qua các điểm cực đại và cực tiểu thì y’ đổi dấu

Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Chân trời sáng tạo hay, chi tiết khác:

Giải Toán 12 trang 7 Tập 1

Giải Toán 12 trang 9 Tập 1

Giải Toán 12 trang 10 Tập 1

Giải Toán 12 trang 11 Tập 1

Giải Toán 12 trang 12 Tập 1

Giải Toán 12 trang 13 Tập 1

1 108 10/06/2024


Xem thêm các chương trình khác: